Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 2/2019

01-02-2019 | Original Article

Combined OCT distance and FBG force sensing cannulation needle for retinal vein cannulation: in vivo animal validation

Authors: M. Ourak, J. Smits, L. Esteveny, G. Borghesan, A. Gijbels, L. Schoevaerdts, Y. Douven, J. Scholtes, E. Lankenau, T. Eixmann, H. Schulz-Hildebrandt, G. Hüttmann, M. Kozlovszky, G. Kronreif, K. Willekens, P. Stalmans, K. Faridpooya, M. Cereda, A. Giani, G. Staurenghi, D. Reynaerts, E. B. Vander Poorten

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 2/2019

Login to get access

Abstract

Purpose

Retinal vein cannulation is an experimental procedure during which a clot-dissolving drug is injected into an obstructed retinal vein. However, due to the fragility and minute size of retinal veins, such procedure is considered too risky to perform manually. With the aid of surgical robots, key limiting factors such as: unwanted eye rotations, hand tremor and instrument immobilization can be tackled. However, local instrument anatomy distance and force estimation remain unresolved issues. A reliable, real-time local interaction estimation between instrument tip and the retina could be a solution. This paper reports on the development of a combined force and distance sensing cannulation needle, and its experimental validation during in vivo animal trials.

Methods

Two prototypes are reported, relying on force and distance measurements based on FBG and OCT A-scan fibres, respectively. Both instruments provide an 80 \(\upmu \hbox {m}\) needle tip and have outer shaft diameters of 0.6 and 2.3 mm, respectively.

Results

Both prototypes were characterized and experimentally validated ex vivo. Then, paired with a previously developed surgical robot, in vivo experimental validation was performed. The first prototype successfully demonstrated the feasibility of using a combined force and distance sensing instrument in an in vivo setting.

Conclusion

The results demonstrate the feasibility of deploying a combined sensing instrument in an in vivo setting. The performed study provides a foundation for further work on real-time local modelling of the surgical scene. This paper provides initial insights; however, additional processing remains necessary.
Literature
1.
go back to reference Ambastha S, Umesh S, Dabir S, Asokan S (2016) Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device. J Biomed Opt 21(11):117002PubMed Ambastha S, Umesh S, Dabir S, Asokan S (2016) Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device. J Biomed Opt 21(11):117002PubMed
2.
go back to reference Asami T, Terasaki H, Ito Y, Sugita T, Kaneko H, Nishiyama J, Namiki H, Kobayashi M, Nishizawa N (2016) Development of a fiber-optic optical coherence tomography probe for intraocular use. Investig Opthalmol Vis Sci 57(9):OCT568–OCT574 Asami T, Terasaki H, Ito Y, Sugita T, Kaneko H, Nishiyama J, Namiki H, Kobayashi M, Nishizawa N (2016) Development of a fiber-optic optical coherence tomography probe for intraocular use. Investig Opthalmol Vis Sci 57(9):OCT568–OCT574
3.
go back to reference Balicki M, Han Jh, Iordachita I, Gehlbach P, Handa J, Taylor R, Kang J (2009) Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. In: Medical image computing and computer-assisted intervention, pp 108–115 Balicki M, Han Jh, Iordachita I, Gehlbach P, Handa J, Taylor R, Kang J (2009) Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. In: Medical image computing and computer-assisted intervention, pp 108–115
4.
go back to reference Borghesan G, Ourak M, Lankenau E, Hüttmann G, Schulz-Hildebrant H, Willekens K, Stalmans P, Reynaerts D, Vander Poorten E (2018) Single scan OCT-based retina detection for robot-assisted retinal vein cannulation. J Med Robot Res 3(02):1840005 Borghesan G, Ourak M, Lankenau E, Hüttmann G, Schulz-Hildebrant H, Willekens K, Stalmans P, Reynaerts D, Vander Poorten E (2018) Single scan OCT-based retina detection for robot-assisted retinal vein cannulation. J Med Robot Res 3(02):1840005
5.
go back to reference Bruyninckx H, Soetens P, Koninckx B (2003) The real-time motion control core of the Orocos project. In: IEEE international conference on robotics and automation, vol 2, pp 2766–2771 Bruyninckx H, Soetens P, Koninckx B (2003) The real-time motion control core of the Orocos project. In: IEEE international conference on robotics and automation, vol 2, pp 2766–2771
6.
go back to reference Du LT, Wessels IF, Underdahl JP, Auran JD (2001) Stereoacuity and depth perception decrease with increased instrument magnification: comparing a non-magnified system with lens loupes and a surgical microscope. Binocul Vis Strabismus Q 16(1):61–7PubMed Du LT, Wessels IF, Underdahl JP, Auran JD (2001) Stereoacuity and depth perception decrease with increased instrument magnification: comparing a non-magnified system with lens loupes and a surgical microscope. Binocul Vis Strabismus Q 16(1):61–7PubMed
7.
go back to reference Ehlers JP, Srivastava SK, Feiler D, Noonan AI, Rollins AM, Tao YK (2014) Integrative Advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS ONE 9(8):e105224PubMedPubMedCentral Ehlers JP, Srivastava SK, Feiler D, Noonan AI, Rollins AM, Tao YK (2014) Integrative Advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS ONE 9(8):e105224PubMedPubMedCentral
8.
go back to reference Ergeneman O, Pokki J, Počepcovà V, Hall H, Abbott JJ, Nelson BJ (2011) Characterization of puncture forces for retinal vein cannulation. J Med Devices 5(4):044504 Ergeneman O, Pokki J, Počepcovà V, Hall H, Abbott JJ, Nelson BJ (2011) Characterization of puncture forces for retinal vein cannulation. J Med Devices 5(4):044504
9.
go back to reference Gijbels A, Vander Poorten EB, Stalmans P, Reynaerts D (2015) Development and experimental validation of a force sensing needle for robotically assisted retinal vein cannulations. In: IEEE international conference on robotics and automation, pp 2270–2276 Gijbels A, Vander Poorten EB, Stalmans P, Reynaerts D (2015) Development and experimental validation of a force sensing needle for robotically assisted retinal vein cannulations. In: IEEE international conference on robotics and automation, pp 2270–2276
10.
go back to reference Gijbels A, Willekens K, Esteveny L, Stalmans P, Reynaerts D, Vander Poorten EB (2016) Towards a clinically applicable robotic assistance system for retinal vein cannulation. In: IEEE international conference on biomedical robotics and biomechatronics, pp 284–291 Gijbels A, Willekens K, Esteveny L, Stalmans P, Reynaerts D, Vander Poorten EB (2016) Towards a clinically applicable robotic assistance system for retinal vein cannulation. In: IEEE international conference on biomedical robotics and biomechatronics, pp 284–291
11.
go back to reference Gonenc B, Chamani A, Handa J, Gehlbach P, Taylor R, Iordachita I (2017) 3-DOF force-sensing motorized micro-forceps for robot-assisted vitreoretinal surgery. IEEE Sens 17(11):3526–3541 Gonenc B, Chamani A, Handa J, Gehlbach P, Taylor R, Iordachita I (2017) 3-DOF force-sensing motorized micro-forceps for robot-assisted vitreoretinal surgery. IEEE Sens 17(11):3526–3541
12.
go back to reference Gonenc B, Iordachita I (2016) FBG-based transverse and axial force-sensing micro-forceps for retinal microsurgery. In: IEEE sensors Gonenc B, Iordachita I (2016) FBG-based transverse and axial force-sensing micro-forceps for retinal microsurgery. In: IEEE sensors
13.
go back to reference Gonenc B, Taylor RH, Iordachita I, Gehlbach P, Handa J (2014) Force-sensing microneedle for assisted retinal vein cannulation. In: IEEE sensors proceedings, pp 698–701 Gonenc B, Taylor RH, Iordachita I, Gehlbach P, Handa J (2014) Force-sensing microneedle for assisted retinal vein cannulation. In: IEEE sensors proceedings, pp 698–701
14.
go back to reference Gonenc B, Tran N, Riviere CN, Gehlbach P, Taylor RH, Iordachita I (2015) Force-based puncture detection and active position holding for assisted retinal vein cannulation. In: IEEE/SICE/RSJ international conference on multisensor fusion and integration for intelligent systems, pp 322–327 Gonenc B, Tran N, Riviere CN, Gehlbach P, Taylor RH, Iordachita I (2015) Force-based puncture detection and active position holding for assisted retinal vein cannulation. In: IEEE/SICE/RSJ international conference on multisensor fusion and integration for intelligent systems, pp 322–327
15.
go back to reference Hayreh SS, Zimmerman MB, Podhajsky P (1994) Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol 117(4):429–441PubMed Hayreh SS, Zimmerman MB, Podhajsky P (1994) Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol 117(4):429–441PubMed
16.
go back to reference He X, Handa J, Gehlbach P, Taylor RH, Iordachita I (2014) A submillimetric 3-DOF force sensing instrument with integrated fiber bragg grating for retinal microsurgery. IEEE Trans Biomed Eng 61(2):522–534PubMedPubMedCentral He X, Handa J, Gehlbach P, Taylor RH, Iordachita I (2014) A submillimetric 3-DOF force sensing instrument with integrated fiber bragg grating for retinal microsurgery. IEEE Trans Biomed Eng 61(2):522–534PubMedPubMedCentral
17.
go back to reference Iordachita I, Sun Z, Balicki M, Kang JU, Phee SJ, Handa J, Gehlbach P, Taylor R (2009) A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. Int J Comput Assist Radiol Surg 4(4):383–390PubMedPubMedCentral Iordachita I, Sun Z, Balicki M, Kang JU, Phee SJ, Handa J, Gehlbach P, Taylor R (2009) A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. Int J Comput Assist Radiol Surg 4(4):383–390PubMedPubMedCentral
18.
go back to reference Menciassi A, Eisinberg A, Scalari G, Anticoli C, Carrozza M, Dario P (2001) Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery. In: IEEE international conference on robotics and automation, vol 1, pp 626–631 Menciassi A, Eisinberg A, Scalari G, Anticoli C, Carrozza M, Dario P (2001) Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery. In: IEEE international conference on robotics and automation, vol 1, pp 626–631
19.
go back to reference Molaei A, Abedloo E, de Smet MD, Safi S, Khorshidifar M, Ahmadieh H, Khosravi MA, Daftarian N (2017) Toward the art of robotic-assisted vitreoretinal surgery. J Ophthalmic Vis Res 12:175–182 Molaei A, Abedloo E, de Smet MD, Safi S, Khorshidifar M, Ahmadieh H, Khosravi MA, Daftarian N (2017) Toward the art of robotic-assisted vitreoretinal surgery. J Ophthalmic Vis Res 12:175–182
20.
go back to reference Noda Y, Ida Y, Tanaka S, Toyama T, Roggia MF, Tamaki Y, Sugita N, Mitsuishi M, Ueta T (2013) Impact of robotic assistance on precision of vitreoretinal surgical procedures. PLoS ONE 8:1–6 Noda Y, Ida Y, Tanaka S, Toyama T, Roggia MF, Tamaki Y, Sugita N, Mitsuishi M, Ueta T (2013) Impact of robotic assistance on precision of vitreoretinal surgical procedures. PLoS ONE 8:1–6
21.
go back to reference Olver J, Cassidy L (2005) Ophthalmology at a glance. Blackwell Science, Hoboken Olver J, Cassidy L (2005) Ophthalmology at a glance. Blackwell Science, Hoboken
22.
go back to reference Peirs J, Clijnen J, Reynaerts D, Brussel HV, Herijgers P, Corteville B, Boone S (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A 115(2–3):447–455 Peirs J, Clijnen J, Reynaerts D, Brussel HV, Herijgers P, Corteville B, Boone S (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A 115(2–3):447–455
23.
go back to reference Riviere C, Ang WT, Khosla P (2003) Toward active tremor canceling in handheld microsurgical instruments. IEEE Trans Robot Autom 19:793–800 Riviere C, Ang WT, Khosla P (2003) Toward active tremor canceling in handheld microsurgical instruments. IEEE Trans Robot Autom 19:793–800
24.
go back to reference Rogers S, Mcintosh RL, Grad B, Journ D, Cheung N, Lim L, Wang JJ, Mitchell P, Kowalski JW, Nguyen H, Wong TY (2011) The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Popul Stud 117:1–14 Rogers S, Mcintosh RL, Grad B, Journ D, Cheung N, Lim L, Wang JJ, Mitchell P, Kowalski JW, Nguyen H, Wong TY (2011) The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Popul Stud 117:1–14
25.
go back to reference Sjaarda RN, Glaser BM, Thompson JT, Murphy RP, Hanham A (1995) Distribution of iatrogenic retinal breaks in macular hole surgery. Ophthalmology 102(9):1387–1392PubMed Sjaarda RN, Glaser BM, Thompson JT, Murphy RP, Hanham A (1995) Distribution of iatrogenic retinal breaks in macular hole surgery. Ophthalmology 102(9):1387–1392PubMed
26.
go back to reference Smits J, Mouloud O, Gijbels A, Esteveny L, Borghesan G, Schoevaerdts L, Willekens K, Stalmans P, Lankenau E, Schulz-Hildebrant H, Hüttmann G, Reynaerts D, Vander Poorten, E (2018) Development and experimental validation of a combined FBG force and OCT distance sensing needle for robot-assisted retinal vein cannulation. In: IEEE international conference on robotics and automation Smits J, Mouloud O, Gijbels A, Esteveny L, Borghesan G, Schoevaerdts L, Willekens K, Stalmans P, Lankenau E, Schulz-Hildebrant H, Hüttmann G, Reynaerts D, Vander Poorten, E (2018) Development and experimental validation of a combined FBG force and OCT distance sensing needle for robot-assisted retinal vein cannulation. In: IEEE international conference on robotics and automation
27.
go back to reference Smits J, Ourak M, Gijbels A, Borghesan G, Esteveny L, Schoevaerdts L, Willekens K, Stalmans P, Lankenau E, Hüttmann G, Reynaerts D, Poorten EBV (2017) Combined force and distance sensing for robot-assisted vitreo-retinal surgery. In: Proceedings of the 7th joint workshop on new technologies for computer/robot assisted surgery Smits J, Ourak M, Gijbels A, Borghesan G, Esteveny L, Schoevaerdts L, Willekens K, Stalmans P, Lankenau E, Hüttmann G, Reynaerts D, Poorten EBV (2017) Combined force and distance sensing for robot-assisted vitreo-retinal surgery. In: Proceedings of the 7th joint workshop on new technologies for computer/robot assisted surgery
28.
go back to reference Song C, Gehlbach PL, Kang JU (2012) Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography. Opt Express 20(21):23414–23421PubMedPubMedCentral Song C, Gehlbach PL, Kang JU (2012) Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography. Opt Express 20(21):23414–23421PubMedPubMedCentral
29.
go back to reference Tang WM, Han DP (2000) A study of surgical approaches to retinal vascular occlusions. Arch Ophthalmol 118(1):138–43PubMed Tang WM, Han DP (2000) A study of surgical approaches to retinal vascular occlusions. Arch Ophthalmol 118(1):138–43PubMed
30.
go back to reference Zhang X (2004) Silicon microsurgery-force sensor based on diffractive optical MEMS encoders. Sensor Rev 24(1):37–41 Zhang X (2004) Silicon microsurgery-force sensor based on diffractive optical MEMS encoders. Sensor Rev 24(1):37–41
Metadata
Title
Combined OCT distance and FBG force sensing cannulation needle for retinal vein cannulation: in vivo animal validation
Authors
M. Ourak
J. Smits
L. Esteveny
G. Borghesan
A. Gijbels
L. Schoevaerdts
Y. Douven
J. Scholtes
E. Lankenau
T. Eixmann
H. Schulz-Hildebrandt
G. Hüttmann
M. Kozlovszky
G. Kronreif
K. Willekens
P. Stalmans
K. Faridpooya
M. Cereda
A. Giani
G. Staurenghi
D. Reynaerts
E. B. Vander Poorten
Publication date
01-02-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 2/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1829-0

Other articles of this Issue 2/2019

International Journal of Computer Assisted Radiology and Surgery 2/2019 Go to the issue