Skip to main content
Top
Published in: Tumor Biology 2/2014

01-02-2014 | Research Article

Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model

Authors: Yang Yan, Yingxin Xu, Yunshan Zhao, Li Li, Peiming Sun, Hailiang Liu, Qinghao Fan, Kai Liang, Wentao Liang, Huiwei Sun, Xiaohui Du, Rong Li

Published in: Tumor Biology | Issue 2/2014

Login to get access

Abstract

Due to the anatomical structure of the rectum, the treatment of rectal cancer remains challenging. Ad-E2F, an oncolytic adenovirus containing the E2F-1 promoter, can selectively replicate within and kill cancer cells derived from solid tumors. Thus, this virus provides a novel approach for the treatment of rectal cancer. Given the poor efficacy and possible adverse reactions that arise from the use of oncolytic virus alone and the results of our analysis of the efficacy of Ad-E2F in the treatment of rectal cancer, we investigated the use of oncolytic adenovirus in combination with adoptive immunotherapy using cytokine-induced killer (CIK) cells as a therapeutic treatment for rectal cancer. Our results illustrated that E2F-1 gene expression is higher in rectal cancer tissue than in normal tissue. Furthermore, the designed oncolytic adenovirus Ad-E2F is capable of selectively killing colorectal cell lines but has no significant effect on CIK cells. The results of in vitro and in vivo experiments demonstrated that combined therapy with Ad-E2F and CIK cells produce stronger antitumor effects than the administration of Ad-E2F or CIK cells alone. For low rectal cancers that are suitable for intratumoral injection, local injections of oncolytic viruses in combination with CIK cell-based adoptive immunotherapy may be suitable as a novel comprehensive therapeutic approach.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rullier E, Denost Q, Vendrely V, Rullier A, Laurent C. Low rectal cancer: classification and standardization of surgery. Dis Colon Rectum. 2013;56:560–7.PubMedCrossRef Rullier E, Denost Q, Vendrely V, Rullier A, Laurent C. Low rectal cancer: classification and standardization of surgery. Dis Colon Rectum. 2013;56:560–7.PubMedCrossRef
2.
go back to reference McKenzie SP, Barnes SL, Schwartz RW. An update on the surgical management of rectal cancer. Curr Surg. 2005;62:407–11.PubMedCrossRef McKenzie SP, Barnes SL, Schwartz RW. An update on the surgical management of rectal cancer. Curr Surg. 2005;62:407–11.PubMedCrossRef
3.
go back to reference Arrazubi V, Suarez J, Novas P, Perez-Hoyos MT, Vera R, Martinez DPP. Chemoradiation of rectal cancer. Minerva Chir. 2013;68:11–26.PubMed Arrazubi V, Suarez J, Novas P, Perez-Hoyos MT, Vera R, Martinez DPP. Chemoradiation of rectal cancer. Minerva Chir. 2013;68:11–26.PubMed
4.
go back to reference Kolodkin-Gal D, Edden Y, Hartshtark Z, Ilan L, Khalaileh A, Pikarsky AJ, et al. Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect. Gene Ther. 2009;16:905–15.PubMedCrossRef Kolodkin-Gal D, Edden Y, Hartshtark Z, Ilan L, Khalaileh A, Pikarsky AJ, et al. Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect. Gene Ther. 2009;16:905–15.PubMedCrossRef
5.
go back to reference Lanson NJ, Friedlander PL, Schwarzenberger P, Kolls JK, Wang G. Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res. 2003;63:7936–41.PubMed Lanson NJ, Friedlander PL, Schwarzenberger P, Kolls JK, Wang G. Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res. 2003;63:7936–41.PubMed
6.
go back to reference Gupta VK, Park JO, Kurihara T, Koons A, Mauceri HJ, Jaskowiak NT, et al. Selective gene expression using a df3/muc1 promoter in a human esophageal adenocarcinoma model. Gene Ther. 2003;10:206–12.PubMedCrossRef Gupta VK, Park JO, Kurihara T, Koons A, Mauceri HJ, Jaskowiak NT, et al. Selective gene expression using a df3/muc1 promoter in a human esophageal adenocarcinoma model. Gene Ther. 2003;10:206–12.PubMedCrossRef
7.
go back to reference Zacharatos P, Kotsinas A, Evangelou K, Karakaidos P, Vassiliou LV, Rezaei N, et al. Distinct expression patterns of the transcription factor e2f-1 in relation to tumour growth parameters in common human carcinomas. J Pathol. 2004;203:744–53.PubMedCrossRef Zacharatos P, Kotsinas A, Evangelou K, Karakaidos P, Vassiliou LV, Rezaei N, et al. Distinct expression patterns of the transcription factor e2f-1 in relation to tumour growth parameters in common human carcinomas. J Pathol. 2004;203:744–53.PubMedCrossRef
8.
go back to reference Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, et al. Transcription factor e2f-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002;198:142–56.PubMedCrossRef Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, et al. Transcription factor e2f-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002;198:142–56.PubMedCrossRef
9.
go back to reference Nielsen NH, Loden M, Cajander J, Emdin SO, Landberg G. G1-s transition defects occur in most breast cancers and predict outcome. Breast Cancer Res Treat. 1999;56:105–12.PubMedCrossRef Nielsen NH, Loden M, Cajander J, Emdin SO, Landberg G. G1-s transition defects occur in most breast cancers and predict outcome. Breast Cancer Res Treat. 1999;56:105–12.PubMedCrossRef
10.
go back to reference Zhang SY, Liu SC, Al-Saleem LF, Holloran D, Babb J, Guo X, et al. E2f-1: a proliferative marker of breast neoplasia. Cancer Epidemiol Biomarkers Prev. 2000;9:395–401.PubMed Zhang SY, Liu SC, Al-Saleem LF, Holloran D, Babb J, Guo X, et al. E2f-1: a proliferative marker of breast neoplasia. Cancer Epidemiol Biomarkers Prev. 2000;9:395–401.PubMed
11.
go back to reference Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C, et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on e1a, the e2f-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 2003;63:1490–9.PubMed Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C, et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on e1a, the e2f-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 2003;63:1490–9.PubMed
12.
go back to reference Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM. An e2f-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res. 2002;62:3438–47.PubMed Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM. An e2f-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res. 2002;62:3438–47.PubMed
13.
go back to reference Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, et al. Cg0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006;12:305–13.PubMedCrossRef Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, et al. Cg0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006;12:305–13.PubMedCrossRef
14.
go back to reference Burke JM, Lamm DL, Meng MV, Nemunaitis JJ, Stephenson JJ, Arseneau JC, et al. A first in human phase 1 study of cg0070, a gm-csf expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol. 2012;188:2391–7.PubMedCrossRef Burke JM, Lamm DL, Meng MV, Nemunaitis JJ, Stephenson JJ, Arseneau JC, et al. A first in human phase 1 study of cg0070, a gm-csf expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol. 2012;188:2391–7.PubMedCrossRef
15.
go back to reference Crompton AM, Kirn DH. From onyx-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets. 2007;7:133–9.PubMedCrossRef Crompton AM, Kirn DH. From onyx-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets. 2007;7:133–9.PubMedCrossRef
16.
go back to reference Li Y, Yu DC, Chen Y, Amin P, Zhang H, Nguyen N, et al. A hepatocellular carcinoma-specific adenovirus variant, cv890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 2001;61:6428–36.PubMed Li Y, Yu DC, Chen Y, Amin P, Zhang H, Nguyen N, et al. A hepatocellular carcinoma-specific adenovirus variant, cv890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 2001;61:6428–36.PubMed
17.
go back to reference Lavilla-Alonso S, Bauer MM, Abo-Ramadan U, Ristimaki A, Halavaara J, Desmond RA, et al. Macrophage metalloelastase (mme) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Ther. 2012;19:126–34.PubMedCrossRef Lavilla-Alonso S, Bauer MM, Abo-Ramadan U, Ristimaki A, Halavaara J, Desmond RA, et al. Macrophage metalloelastase (mme) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Ther. 2012;19:126–34.PubMedCrossRef
18.
go back to reference Wang H, Wei F, Li H, Ji X, Li S, Chen X. Combination of oncolytic adenovirus and endostatin inhibits human retinoblastoma in an in vivo mouse model. Int J Mol Med. 2013;31:377–85.PubMed Wang H, Wei F, Li H, Ji X, Li S, Chen X. Combination of oncolytic adenovirus and endostatin inhibits human retinoblastoma in an in vivo mouse model. Int J Mol Med. 2013;31:377–85.PubMed
19.
go back to reference Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.PubMedCrossRef Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.PubMedCrossRef
20.
21.
go back to reference Li R, Wang C, Liu L, Du C, Cao S, Yu J, et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase ii clinical study. Cancer Immunol Immunother. 2012;61:2125–33.PubMedCrossRef Li R, Wang C, Liu L, Du C, Cao S, Yu J, et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase ii clinical study. Cancer Immunol Immunother. 2012;61:2125–33.PubMedCrossRef
22.
go back to reference Liu L, Zhang W, Qi X, Li H, Yu J, Wei S, et al. Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res. 2012;18:1751–9.PubMedCrossRef Liu L, Zhang W, Qi X, Li H, Yu J, Wei S, et al. Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res. 2012;18:1751–9.PubMedCrossRef
23.
go back to reference Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther. 2013;20:70–6.PubMedCrossRef Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther. 2013;20:70–6.PubMedCrossRef
24.
go back to reference Yang Z, Zhang Q, Xu K, Shan J, Shen J, Liu L, et al. Combined therapy with cytokine-induced killer cells and oncolytic adenovirus expressing il-12 induce enhanced antitumor activity in liver tumor model. PLoS One. 2012;7:e44802.PubMedCentralPubMedCrossRef Yang Z, Zhang Q, Xu K, Shan J, Shen J, Liu L, et al. Combined therapy with cytokine-induced killer cells and oncolytic adenovirus expressing il-12 induce enhanced antitumor activity in liver tumor model. PLoS One. 2012;7:e44802.PubMedCentralPubMedCrossRef
25.
go back to reference Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther. 1999;10:1721–33.PubMedCrossRef Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther. 1999;10:1721–33.PubMedCrossRef
26.
go back to reference Wu YM, Zhang KJ, Yue XT, Wang YQ, Yang Y, Li GC, et al. Enhancement of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying mda-7/il-24. Acta Pharmacol Sin. 2009;30:467–77.PubMedCrossRef Wu YM, Zhang KJ, Yue XT, Wang YQ, Yang Y, Li GC, et al. Enhancement of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying mda-7/il-24. Acta Pharmacol Sin. 2009;30:467–77.PubMedCrossRef
27.
go back to reference Du X, Jin R, Ning N, Li L, Wang Q, Liang W, et al. In vivo distribution and antitumor effect of infused immune cells in a gastric cancer model. Oncol Rep. 2012;28:1743–9.PubMed Du X, Jin R, Ning N, Li L, Wang Q, Liang W, et al. In vivo distribution and antitumor effect of infused immune cells in a gastric cancer model. Oncol Rep. 2012;28:1743–9.PubMed
28.
go back to reference Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72:1853–64.PubMedCentralPubMedCrossRef Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72:1853–64.PubMedCentralPubMedCrossRef
29.
go back to reference Donigan M, Norcross LS, Aversa J, Colon J, Smith J, Madero-Visbal R, et al. Novel murine model for colon cancer: non-operative trans-anal rectal injection. J Surg Res. 2009;154:299–303.PubMedCrossRef Donigan M, Norcross LS, Aversa J, Colon J, Smith J, Madero-Visbal R, et al. Novel murine model for colon cancer: non-operative trans-anal rectal injection. J Surg Res. 2009;154:299–303.PubMedCrossRef
30.
go back to reference Kishimoto H, Kojima T, Watanabe Y, Kagawa S, Fujiwara T, Uno F, et al. In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus. Nat Med. 2006;12:1213–9.PubMedCrossRef Kishimoto H, Kojima T, Watanabe Y, Kagawa S, Fujiwara T, Uno F, et al. In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus. Nat Med. 2006;12:1213–9.PubMedCrossRef
31.
go back to reference Tsutsumi S, Kuwano H, Morinaga N, Shimura T, Asao T. Animal model of para-aortic lymph node metastasis. Cancer Lett. 2001;169:77–85.PubMedCrossRef Tsutsumi S, Kuwano H, Morinaga N, Shimura T, Asao T. Animal model of para-aortic lymph node metastasis. Cancer Lett. 2001;169:77–85.PubMedCrossRef
32.
go back to reference Nettelbeck DM. Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer. J Mol Med (Berlin). 2008;86:363–77.CrossRef Nettelbeck DM. Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer. J Mol Med (Berlin). 2008;86:363–77.CrossRef
33.
go back to reference Stevaux O, Dyson NJ. A revised picture of the e2f transcriptional network and rb function. Curr Opin Cell Biol. 2002;14:684–91.PubMedCrossRef Stevaux O, Dyson NJ. A revised picture of the e2f transcriptional network and rb function. Curr Opin Cell Biol. 2002;14:684–91.PubMedCrossRef
34.
go back to reference Harbour JW, Dean DC. The rb/e2f pathway: expanding roles and emerging paradigms. Genes Dev. 2000;14:2393–409.PubMedCrossRef Harbour JW, Dean DC. The rb/e2f pathway: expanding roles and emerging paradigms. Genes Dev. 2000;14:2393–409.PubMedCrossRef
35.
36.
go back to reference Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E. Expression of the e2f family in human gastrointestinal carcinomas. Int J Cancer. 1999;81:535–8.PubMedCrossRef Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E. Expression of the e2f family in human gastrointestinal carcinomas. Int J Cancer. 1999;81:535–8.PubMedCrossRef
37.
go back to reference Bramis J, Zacharatos P, Papaconstantinou I, Kotsinas A, Sigala F, Korkolis DP, et al. E2f-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res. 2004;24:3041–7.PubMed Bramis J, Zacharatos P, Papaconstantinou I, Kotsinas A, Sigala F, Korkolis DP, et al. E2f-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res. 2004;24:3041–7.PubMed
38.
go back to reference Palaiologou M, Koskinas J, Karanikolas M, Fatourou E, Tiniakos DG. E2f-1 is overexpressed and pro-apoptotic in human hepatocellular carcinoma. Virchows Arch. 2012;460:439–46.PubMedCrossRef Palaiologou M, Koskinas J, Karanikolas M, Fatourou E, Tiniakos DG. E2f-1 is overexpressed and pro-apoptotic in human hepatocellular carcinoma. Virchows Arch. 2012;460:439–46.PubMedCrossRef
39.
go back to reference Rojas JJ, Cascallo M, Guedan S, Gros A, Martinez-Quintanilla J, Hemminki A, et al. A modified e2f-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses. Gene Ther. 2009;16:1441–51.PubMedCrossRef Rojas JJ, Cascallo M, Guedan S, Gros A, Martinez-Quintanilla J, Hemminki A, et al. A modified e2f-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses. Gene Ther. 2009;16:1441–51.PubMedCrossRef
40.
go back to reference Hao H, Dong YB, Bowling MT, Zhou HS, McMasters KM. Alteration of gene expression in melanoma cells following combined treatment with e2f-1 and doxorubicin. Anticancer Res. 2006;26:1947–56.PubMed Hao H, Dong YB, Bowling MT, Zhou HS, McMasters KM. Alteration of gene expression in melanoma cells following combined treatment with e2f-1 and doxorubicin. Anticancer Res. 2006;26:1947–56.PubMed
42.
go back to reference Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8:1581–8.PubMedCentralPubMedCrossRef Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8:1581–8.PubMedCentralPubMedCrossRef
43.
go back to reference Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG. Clinical trials on cik cells: first report of the international registry on cik cells (ircc). J Cancer Res Clin Oncol. 2011;137:305–10.PubMedCrossRef Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG. Clinical trials on cik cells: first report of the international registry on cik cells (ircc). J Cancer Res Clin Oncol. 2011;137:305–10.PubMedCrossRef
44.
go back to reference Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, et al. Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy. 2009;11:1076–83.PubMedCrossRef Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, et al. Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy. 2009;11:1076–83.PubMedCrossRef
45.
go back to reference Thorne SH, Negrin RS, Contag CH. Synergistic antitumor effects of immune cell-viral biotherapy. Science. 2006;311:1780–4.PubMedCrossRef Thorne SH, Negrin RS, Contag CH. Synergistic antitumor effects of immune cell-viral biotherapy. Science. 2006;311:1780–4.PubMedCrossRef
46.
go back to reference Sampath P, Li J, Hou W, Chen H, Bartlett DL, Thorne SH. Crosstalk between immune cell and oncolytic vaccinia therapy enhances tumor trafficking and antitumor effects. Mol Ther. 2013;21:620–8.PubMedCrossRef Sampath P, Li J, Hou W, Chen H, Bartlett DL, Thorne SH. Crosstalk between immune cell and oncolytic vaccinia therapy enhances tumor trafficking and antitumor effects. Mol Ther. 2013;21:620–8.PubMedCrossRef
Metadata
Title
Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model
Authors
Yang Yan
Yingxin Xu
Yunshan Zhao
Li Li
Peiming Sun
Hailiang Liu
Qinghao Fan
Kai Liang
Wentao Liang
Huiwei Sun
Xiaohui Du
Rong Li
Publication date
01-02-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1149-5

Other articles of this Issue 2/2014

Tumor Biology 2/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine