Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Colorectal Cancer | Research

Network pharmacology-based strategy to investigate the bioactive ingredients and molecular mechanism of Evodia rutaecarpa in colorectal cancer

Authors: Yongqu Lu, Kangdi Dong, Meng Yang, Jun Liu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Evodia rutaecarpa, a traditional herbal drug, is widely used as an analgesic and antiemetic. Many studies have confirmed that Evodia rutaecarpa has an anticancer effect. Here, our study explored the bioactive ingredients in Evodia rutaecarpa acting on colorectal cancer (CRC) by utilizing network pharmacology.

Methods

We clarified the effective ingredients and corresponding targets of Evodia rutaecarpa. CRC-related genes were obtained from several public databases to extract candidate targets. Candidate targets were used to construct a protein–protein interaction (PPI) network for screening out core targets with topological analysis, and then we selected the core targets and corresponding ingredients for molecular docking. Cell proliferation experiments and enzyme-linked immunosorbent assays (ELISAs) verified the anticancer effect of the bioactive ingredients and the results of molecular docking.

Results

Our study obtained a total of 24 bioactive ingredients and 100 candidate targets after intersecting ingredient-related targets and CRC-related genes, and finally, 10 genes—TNF, MAPK1, TP53, AKT1, RELA, RB1, ESR1, JUN, CCND1 and MYC—were screened out as core targets. In vitro experiments suggested that rutaecarpine excelled isorhamnetin, evodiamine and quercetin in the inhibition of CRC cells and the release of TNF-α was altered with the concentrations of rutaecarpine. Molecular docking showed that rutaecarpine could effectively bind with TNF-α.

Conclusion

The pairs of ingredients-targets in Evodia rutaecarpa acted on CRC were excavated. Rutaecarpine as a bioactive ingredient of Evodia rutaecarpamight effectively inhibit the proliferation of CRC cells by suppressing TNF-α.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.CrossRef
2.
go back to reference Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. The Lancet. 2019;394(10207):1467–80.CrossRef Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. The Lancet. 2019;394(10207):1467–80.CrossRef
3.
go back to reference Hanahan D, Weinberg Robert A. Hallmarks of Cancer: the Next Generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg Robert A. Hallmarks of Cancer: the Next Generation. Cell. 2011;144(5):646–74.PubMedCrossRef
4.
go back to reference Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in Colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94.PubMedCrossRef Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in Colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94.PubMedCrossRef
5.
go back to reference McQuade RM, Stojanovska V, Bornstein JC, Nurgali K. Colorectal Cancer chemotherapy: the evolution of treatment and New approaches. Curr Med Chem. 2017;24(15):1537–57.PubMedCrossRef McQuade RM, Stojanovska V, Bornstein JC, Nurgali K. Colorectal Cancer chemotherapy: the evolution of treatment and New approaches. Curr Med Chem. 2017;24(15):1537–57.PubMedCrossRef
6.
go back to reference Vogel A, Hofheinz RD, Kubicka S, Arnold D. Treatment decisions in metastatic Colorectal cancer – beyond first and second line combination therapies. Cancer Treat Rev. 2017;59:54–60.PubMedCrossRef Vogel A, Hofheinz RD, Kubicka S, Arnold D. Treatment decisions in metastatic Colorectal cancer – beyond first and second line combination therapies. Cancer Treat Rev. 2017;59:54–60.PubMedCrossRef
7.
go back to reference Baratti D, Kusamura S, Pietrantonio F, Guaglio M, Niger M, Deraco M. Progress in treatments for Colorectal cancer peritoneal metastases during the years 2010–2015. A systematic review. Crit Rev Oncol/Hematol. 2016;100:209–22.PubMedCrossRef Baratti D, Kusamura S, Pietrantonio F, Guaglio M, Niger M, Deraco M. Progress in treatments for Colorectal cancer peritoneal metastases during the years 2010–2015. A systematic review. Crit Rev Oncol/Hematol. 2016;100:209–22.PubMedCrossRef
8.
go back to reference Baburin I, Varkevisser R, Schramm A, Saxena P, Beyl S, Szkokan P, et al. Dehydroevodiamine and hortiamine, alkaloids from the traditional Chinese herbal drug Evodia rutaecarpa, are IKr blockers with proarrhythmic effects in vitro and in vivo. Pharmacol Res. 2018;131:150–63.PubMedCrossRef Baburin I, Varkevisser R, Schramm A, Saxena P, Beyl S, Szkokan P, et al. Dehydroevodiamine and hortiamine, alkaloids from the traditional Chinese herbal drug Evodia rutaecarpa, are IKr blockers with proarrhythmic effects in vitro and in vivo. Pharmacol Res. 2018;131:150–63.PubMedCrossRef
9.
go back to reference Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. Eur J Med Chem. 2019;176:268–91.PubMedCrossRef Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. Eur J Med Chem. 2019;176:268–91.PubMedCrossRef
11.
go back to reference Park SY, Park C, Park SH, Hong SH, Kim GY, Hong SH, et al. Induction of apoptosis by ethanol extract of Evodia rutaecarpa in HeLa human Cervical cancer cells via activation of AMP-activated protein kinase. Biosci Trends. 2017;10(6):467–76.PubMedCrossRef Park SY, Park C, Park SH, Hong SH, Kim GY, Hong SH, et al. Induction of apoptosis by ethanol extract of Evodia rutaecarpa in HeLa human Cervical cancer cells via activation of AMP-activated protein kinase. Biosci Trends. 2017;10(6):467–76.PubMedCrossRef
12.
go back to reference Chen T-C, Chien C-C, Wu M-S, Chen Y-C. Evodiamine from Evodia rutaecarpa induces apoptosis via activation of JNK and PERK in human Ovarian cancer cells. Phytomedicine. 2016;23(1):68–78.PubMedCrossRef Chen T-C, Chien C-C, Wu M-S, Chen Y-C. Evodiamine from Evodia rutaecarpa induces apoptosis via activation of JNK and PERK in human Ovarian cancer cells. Phytomedicine. 2016;23(1):68–78.PubMedCrossRef
13.
go back to reference Liao Y, Liu Y, Xia X, Shao Z, Huang C, He J, et al. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in Prostate cancer therapy. Theranostics. 2020;10(8):3366–81.PubMedPubMedCentralCrossRef Liao Y, Liu Y, Xia X, Shao Z, Huang C, He J, et al. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in Prostate cancer therapy. Theranostics. 2020;10(8):3366–81.PubMedPubMedCentralCrossRef
14.
go back to reference Zhang Y, Yan T, Sun D, Xie C, Wang T, Liu X, et al. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced Colitis. Free Radic Biol Med. 2020;148:33–41.PubMedCrossRef Zhang Y, Yan T, Sun D, Xie C, Wang T, Liu X, et al. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced Colitis. Free Radic Biol Med. 2020;148:33–41.PubMedCrossRef
16.
go back to reference Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–66.PubMedCrossRef Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–66.PubMedCrossRef
17.
go back to reference Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.PubMedCrossRef Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.PubMedCrossRef
18.
go back to reference Fotis C, Antoranz A, Hatziavramidis D, Sakellaropoulos T, Alexopoulos LG. Network-based technologies for early drug discovery. Drug Discovery Today. 2018;23(3):626–35.PubMedCrossRef Fotis C, Antoranz A, Hatziavramidis D, Sakellaropoulos T, Alexopoulos LG. Network-based technologies for early drug discovery. Drug Discovery Today. 2018;23(3):626–35.PubMedCrossRef
19.
go back to reference Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13.PubMedPubMedCentralCrossRef Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13.PubMedPubMedCentralCrossRef
20.
go back to reference Wang N, Zheng Y, Gu J, Cai Y, Wang S, Zhang F, et al. Network-pharmacology-based validation of TAMS/CXCL-1 as key mediator of XIAOPI formula preventing Breast cancer development and Metastasis. Sci Rep. 2017;7(1):14513.PubMedPubMedCentralCrossRef Wang N, Zheng Y, Gu J, Cai Y, Wang S, Zhang F, et al. Network-pharmacology-based validation of TAMS/CXCL-1 as key mediator of XIAOPI formula preventing Breast cancer development and Metastasis. Sci Rep. 2017;7(1):14513.PubMedPubMedCentralCrossRef
21.
go back to reference Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–D9.CrossRef Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–D9.CrossRef
22.
go back to reference Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from Gene Data Mining to Disease Genome sequence analyses. Curr Protocols Bioinf. 2016;54(1):1301–33.CrossRef Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from Gene Data Mining to Disease Genome sequence analyses. Curr Protocols Bioinf. 2016;54(1):1301–33.CrossRef
23.
go back to reference Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019;47(D1):D1038–D43.PubMedCrossRef Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019;47(D1):D1038–D43.PubMedCrossRef
24.
go back to reference Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence‐based Framework for evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. 2021;110(3):563–72.PubMedPubMedCentralCrossRef Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence‐based Framework for evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. 2021;110(3):563–72.PubMedPubMedCentralCrossRef
25.
go back to reference Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2019;48(D1):D1031–D41.PubMedCentral Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2019;48(D1):D1031–D41.PubMedCentral
26.
go back to reference Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D82.PubMedCrossRef Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D82.PubMedCrossRef
28.
go back to reference Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D95.PubMedCrossRef Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D95.PubMedCrossRef
30.
go back to reference Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31(2):455–61.CrossRef Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31(2):455–61.CrossRef
31.
go back to reference Lee K, Cho S-G, Choi Y, Choi Y-J, Lee G-R, Jeon C-Y, et al. Herbal prescription, Danggui-Sayuk-Ga-Osuyu-Senggang-Tang, inhibits TNF-α-induced epithelial-mesenchymal transition in HCT116 Colorectal cancer cells. Int J Mol Med. 2017;41(1):373–80.PubMed Lee K, Cho S-G, Choi Y, Choi Y-J, Lee G-R, Jeon C-Y, et al. Herbal prescription, Danggui-Sayuk-Ga-Osuyu-Senggang-Tang, inhibits TNF-α-induced epithelial-mesenchymal transition in HCT116 Colorectal cancer cells. Int J Mol Med. 2017;41(1):373–80.PubMed
32.
go back to reference Ji L, Wu M, Li Z. Rutacecarpine inhibits angiogenesis by targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k signaling pathway. Molecules. 2018;23(8). Ji L, Wu M, Li Z. Rutacecarpine inhibits angiogenesis by targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k signaling pathway. Molecules. 2018;23(8).
33.
go back to reference Jin SW, Hwang YP, Choi CY, Kim HG, Kim SJ, Kim Y, et al. Protective effect of rutaecarpine against t-BHP-induced hepatotoxicity by upregulating antioxidant enzymes via the CaMKII-Akt and Nrf2/ARE pathways. Food Chem Toxicol. 2017;100:138–48.PubMedCrossRef Jin SW, Hwang YP, Choi CY, Kim HG, Kim SJ, Kim Y, et al. Protective effect of rutaecarpine against t-BHP-induced hepatotoxicity by upregulating antioxidant enzymes via the CaMKII-Akt and Nrf2/ARE pathways. Food Chem Toxicol. 2017;100:138–48.PubMedCrossRef
34.
go back to reference Lin JY, Yeh TH. Rutaecarpine administration inhibits cancer cell growth in allogenic TRAMP-C1 Prostate cancer mice correlating with immune balance in vivo. Biomed Pharmacother. 2021;139:111648.PubMedCrossRef Lin JY, Yeh TH. Rutaecarpine administration inhibits cancer cell growth in allogenic TRAMP-C1 Prostate cancer mice correlating with immune balance in vivo. Biomed Pharmacother. 2021;139:111648.PubMedCrossRef
37.
go back to reference Dörner T, Kay J. Biosimilars in rheumatology: current perspectives and lessons learnt. Nat Rev Rheumatol. 2015;11(12):713–24.PubMedCrossRef Dörner T, Kay J. Biosimilars in rheumatology: current perspectives and lessons learnt. Nat Rev Rheumatol. 2015;11(12):713–24.PubMedCrossRef
38.
go back to reference Obeed OAA. Increased expression of Tumor necrosis factor-α is associated with advanced Colorectal cancer stages. World J Gastroenterol. 2014;20(48):18390–6.PubMedPubMedCentralCrossRef Obeed OAA. Increased expression of Tumor necrosis factor-α is associated with advanced Colorectal cancer stages. World J Gastroenterol. 2014;20(48):18390–6.PubMedPubMedCentralCrossRef
39.
go back to reference Yuan M, Meng W, Liao W, Lian S. Andrographolide antagonizes TNF-α-Induced IL-8 via inhibition of NADPH Oxidase/ROS/NF-κB and Src/MAPKs/AP-1 Axis in Human Colorectal Cancer HCT116 cells. J Agric Food Chem. 2018;66(20):5139–48.PubMedCrossRef Yuan M, Meng W, Liao W, Lian S. Andrographolide antagonizes TNF-α-Induced IL-8 via inhibition of NADPH Oxidase/ROS/NF-κB and Src/MAPKs/AP-1 Axis in Human Colorectal Cancer HCT116 cells. J Agric Food Chem. 2018;66(20):5139–48.PubMedCrossRef
40.
go back to reference D’Haens GR, van Deventer S. 25 years of anti-TNF treatment for inflammatory bowel Disease: lessons from the past and a look to the future. Gut. 2021;70(7):1396–405.PubMedCrossRef D’Haens GR, van Deventer S. 25 years of anti-TNF treatment for inflammatory bowel Disease: lessons from the past and a look to the future. Gut. 2021;70(7):1396–405.PubMedCrossRef
41.
go back to reference Alkhayyat M, Abureesh M, Gill A, Khoudari G, Abou Saleh M, Mansoor E, et al. Lower rates of Colorectal Cancer in patients with inflammatory bowel Disease using Anti-TNF therapy. Inflamm Bowel Dis. 2021;27(7):1052–60.PubMedCrossRef Alkhayyat M, Abureesh M, Gill A, Khoudari G, Abou Saleh M, Mansoor E, et al. Lower rates of Colorectal Cancer in patients with inflammatory bowel Disease using Anti-TNF therapy. Inflamm Bowel Dis. 2021;27(7):1052–60.PubMedCrossRef
42.
go back to reference Singh SP, Nongalleima K, Singh NI, Doley P, Singh CB, Singh TR, et al. Zerumbone reduces proliferation of HCT116 colon Cancer cells by inhibition of TNF-alpha. Sci Rep. 2018;8(1):4090.PubMedPubMedCentralCrossRef Singh SP, Nongalleima K, Singh NI, Doley P, Singh CB, Singh TR, et al. Zerumbone reduces proliferation of HCT116 colon Cancer cells by inhibition of TNF-alpha. Sci Rep. 2018;8(1):4090.PubMedPubMedCentralCrossRef
43.
go back to reference Zhang Y, Zhang Y, Zhao Y, Wu W, Meng W, Zhou Y et al. Protection against ulcerative Colitis and Colorectal cancer by evodiamine via anti–inflammatory effects. Mol Med Rep. 2022;25(5). Zhang Y, Zhang Y, Zhao Y, Wu W, Meng W, Zhou Y et al. Protection against ulcerative Colitis and Colorectal cancer by evodiamine via anti–inflammatory effects. Mol Med Rep. 2022;25(5).
Metadata
Title
Network pharmacology-based strategy to investigate the bioactive ingredients and molecular mechanism of Evodia rutaecarpa in colorectal cancer
Authors
Yongqu Lu
Kangdi Dong
Meng Yang
Jun Liu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04254-8

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue