Skip to main content
Top
Published in: Trials 1/2020

Open Access 01-12-2020 | Colorectal Cancer | Research

Moderators of the effectiveness of an intervention to increase colorectal cancer screening through mailed fecal immunochemical test kits: results from a pragmatic randomized trial

Authors: Elizabeth A. O’Connor, William M. Vollmer, Amanda F. Petrik, Beverly B. Green, Gloria D. Coronado

Published in: Trials | Issue 1/2020

Login to get access

Abstract

Background

Colorectal cancer (CRC) screening rates remain suboptimal, particularly in low-income and underserved populations. Mailed fecal immunochemical testing (FIT) may overcome common barriers to screening; however, the effect of mailed FIT kits may differ across important subpopulations. The goal of the current study was to examine sociodemographic and health-related factors that moderate the effect of an intervention of automated direct mail of FIT kits at health clinics serving low-income populations.

Methods

This study is a secondary analysis of the Strategies and Opportunities to Stop Colon Cancer in Priority Populations (STOP CRC) study, a cluster-randomized pragmatic trial to increase uptake of CRC screening in patients seen at federally qualified health centers. The intervention involved tools embedded in the electronic medical records to enable participating clinics to mail FIT kits and related materials to eligible participants. We examined the rate of FIT completion by potential moderating characteristics using electronic health record data supplemented by the American Community Survey and the Centers for Medicare & Medicaid Services Geographic Variation datasets, linked via geocoding to patients’ addresses. All patients aged 50–75 seen in participating health clinics who were eligible for CRC screening were included.

Results

Although not always statistically significant, we saw a consistent pattern of increased FIT return rates among intervention participants compared to control participants across all subgroups studied, with incidence rate ratios (IRRs) generally ranging from 1.25 to 1.50. FIT completion in the intervention group ranged from 15 and 20% across subpopulations, typically three to six percentage points higher than the control group participants. The only moderator with a statistically significant interaction was race: persons of Asian descent showed a twofold response to the intervention (adjusted incidence rate ratio [aIRR] = 2.06, 95% confidence interval 1.41 to 3.00).

Conclusions

Response to a mailed FIT intervention was generally consistent across a wide range of individual and neighborhood-level patient characteristics, including typically underserved patients and those in low-resource communities.

Trial registration

ClinicalTrials.gov, NCT01742065. Registered on 5 December 2012.
Literature
1.
go back to reference U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool, based on November 2018 submission data (1999-2016): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; www.cdc.gov/cancer/dataviz, June 2019. U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool, based on November 2018 submission data (1999-2016): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; www.​cdc.​gov/​cancer/​dataviz, June 2019.
2.
go back to reference National Vital Statistics System. QuickStats: age-adjusted death rates for top five causes of cancer death, by race/hispanic Ethnicity—United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65:989. National Vital Statistics System. QuickStats: age-adjusted death rates for top five causes of cancer death, by race/hispanic Ethnicity—United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65:989.
3.
go back to reference US Preventive Services Task Force, Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA. 2016;315(23):2564–75.CrossRef US Preventive Services Task Force, Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA. 2016;315(23):2564–75.CrossRef
4.
go back to reference Maciosek MV, Coffield AB, Edwards NM, Flottemesch TJ, Goodman MJ, Solberg LI. Priorities among effective clinical preventive services: results of a systematic review and analysis. Am J Prev Med. 2006;31(1):52–61.CrossRef Maciosek MV, Coffield AB, Edwards NM, Flottemesch TJ, Goodman MJ, Solberg LI. Priorities among effective clinical preventive services: results of a systematic review and analysis. Am J Prev Med. 2006;31(1):52–61.CrossRef
5.
go back to reference Knudsen AB, Zauber AG, Rutter CM, Naber SK, Doria-Rose VP, Pabiniak C, et al. Estimation of benefits, burden, and harms of colorectal cancer screening strategies: modeling study for the US Preventive Services Task Force. JAMA. 2016;315(23):2595–609.CrossRef Knudsen AB, Zauber AG, Rutter CM, Naber SK, Doria-Rose VP, Pabiniak C, et al. Estimation of benefits, burden, and harms of colorectal cancer screening strategies: modeling study for the US Preventive Services Task Force. JAMA. 2016;315(23):2595–609.CrossRef
8.
go back to reference Centers for Disease Control Prevention. Cancer screening - United States, 2010. MMWR Morb Mortal Wkly Rep. 2012;61(3):41–5. Centers for Disease Control Prevention. Cancer screening - United States, 2010. MMWR Morb Mortal Wkly Rep. 2012;61(3):41–5.
10.
go back to reference Beydoun HA, Beydoun MA. Predictors of colorectal cancer screening behaviors among average-risk older adults in the United States. Cancer Causes Control. 2008;19(4):339–59.CrossRef Beydoun HA, Beydoun MA. Predictors of colorectal cancer screening behaviors among average-risk older adults in the United States. Cancer Causes Control. 2008;19(4):339–59.CrossRef
11.
go back to reference Brittain K, Murphy VP. Sociocultural and health correlates related to colorectal cancer screening adherence among urban African Americans. Cancer Nurs. 2015;38(2):118–24.CrossRef Brittain K, Murphy VP. Sociocultural and health correlates related to colorectal cancer screening adherence among urban African Americans. Cancer Nurs. 2015;38(2):118–24.CrossRef
12.
go back to reference Katz ML, Reiter PL, Young GS, Pennell ML, Tatum CM, Paskett ED. Adherence to multiple cancer screening tests among women living in Appalachia Ohio. Cancer Epidemiol Biomark Prev. 2015;24(10):1489–94.CrossRef Katz ML, Reiter PL, Young GS, Pennell ML, Tatum CM, Paskett ED. Adherence to multiple cancer screening tests among women living in Appalachia Ohio. Cancer Epidemiol Biomark Prev. 2015;24(10):1489–94.CrossRef
13.
go back to reference Ricardo-Rodrigues I, Jiménez-García R, Hernández-Barrera V, Carrasco-Garrido P, Jiménez-Trujillo I, López-de-Andrés A. Adherence to and predictors of participation in colorectal cancer screening with faecal occult blood testing in Spain, 2009-2011. Eur J Cancer Prev. 2015;24(4):305–12.CrossRef Ricardo-Rodrigues I, Jiménez-García R, Hernández-Barrera V, Carrasco-Garrido P, Jiménez-Trujillo I, López-de-Andrés A. Adherence to and predictors of participation in colorectal cancer screening with faecal occult blood testing in Spain, 2009-2011. Eur J Cancer Prev. 2015;24(4):305–12.CrossRef
14.
go back to reference Baker DW, Brown T, Buchanan DR, Weil J, Balsley K, Ranalli L, et al. Comparative effectiveness of a multifaceted intervention to improve adherence to annual colorectal cancer screening in community health centers: a randomized clinical trial. JAMA Intern Med. 2014;174(8):1235–41.CrossRef Baker DW, Brown T, Buchanan DR, Weil J, Balsley K, Ranalli L, et al. Comparative effectiveness of a multifaceted intervention to improve adherence to annual colorectal cancer screening in community health centers: a randomized clinical trial. JAMA Intern Med. 2014;174(8):1235–41.CrossRef
15.
go back to reference Coronado GD, Golovaty I, Longton G, Levy L, Jimenez R. Effectiveness of a clinic-based colorectal cancer screening promotion program for underserved Hispanics. Cancer. 2011;117(8):1745–54.CrossRef Coronado GD, Golovaty I, Longton G, Levy L, Jimenez R. Effectiveness of a clinic-based colorectal cancer screening promotion program for underserved Hispanics. Cancer. 2011;117(8):1745–54.CrossRef
16.
go back to reference Gupta S, Halm EA, Rockey DC, Hammons M, Koch M, Carter E, et al. Comparative effectiveness of fecal immunochemical test outreach, colonoscopy outreach, and usual care for boosting colorectal cancer screening among the underserved: a randomized clinical trial. JAMA Intern Med. 2013;173(18):1725–32.PubMedPubMedCentral Gupta S, Halm EA, Rockey DC, Hammons M, Koch M, Carter E, et al. Comparative effectiveness of fecal immunochemical test outreach, colonoscopy outreach, and usual care for boosting colorectal cancer screening among the underserved: a randomized clinical trial. JAMA Intern Med. 2013;173(18):1725–32.PubMedPubMedCentral
17.
go back to reference Hendren S, Winters P, Humiston S, Idris A, Li SX, Ford P, et al. Randomized, controlled trial of a multimodal intervention to improve cancer screening rates in a safety-net primary care practice. J Gen Intern Med. 2014;29(1):41–9.CrossRef Hendren S, Winters P, Humiston S, Idris A, Li SX, Ford P, et al. Randomized, controlled trial of a multimodal intervention to improve cancer screening rates in a safety-net primary care practice. J Gen Intern Med. 2014;29(1):41–9.CrossRef
18.
go back to reference Jean-Jacques M, Kaleba EO, Gatta JL, Gracia G, Ryan ER, Choucair BN. Program to improve colorectal cancer screening in a low-income, racially diverse population: a randomized controlled trial. Ann Fam Med. 2012;10(5):412–7.CrossRef Jean-Jacques M, Kaleba EO, Gatta JL, Gracia G, Ryan ER, Choucair BN. Program to improve colorectal cancer screening in a low-income, racially diverse population: a randomized controlled trial. Ann Fam Med. 2012;10(5):412–7.CrossRef
19.
go back to reference Sequist TD, Franz C, Ayanian JZ. Cost-effectiveness of patient mailings to promote colorectal cancer screening. Med Care. 2010;48(6):553–7.CrossRef Sequist TD, Franz C, Ayanian JZ. Cost-effectiveness of patient mailings to promote colorectal cancer screening. Med Care. 2010;48(6):553–7.CrossRef
20.
go back to reference Singal AG, Gupta S, Tiro JA, Skinner CS, McCallister K, Sanders JM, et al. Outreach invitations for FIT and colonoscopy improve colorectal cancer screening rates: a randomized controlled trial in a safety-net health system. Cancer. 2016;122(3):456–63.CrossRef Singal AG, Gupta S, Tiro JA, Skinner CS, McCallister K, Sanders JM, et al. Outreach invitations for FIT and colonoscopy improve colorectal cancer screening rates: a randomized controlled trial in a safety-net health system. Cancer. 2016;122(3):456–63.CrossRef
21.
go back to reference Singal AG, Gupta S, Skinner CS, Ahn C, Santini NO, Agrawal D, et al. Effect of colonoscopy outreach vs fecal immunochemical test outreach on colorectal cancer screening completion: a randomized clinical trial. JAMA. 2017;318(9):806–15.CrossRef Singal AG, Gupta S, Skinner CS, Ahn C, Santini NO, Agrawal D, et al. Effect of colonoscopy outreach vs fecal immunochemical test outreach on colorectal cancer screening completion: a randomized clinical trial. JAMA. 2017;318(9):806–15.CrossRef
22.
go back to reference Liang PS, Wheat CL, Abhat A, Brenner AT, Fagerlin A, Hayward RA, et al. Adherence to competing strategies for colorectal cancer screening over 3 years. Am J Gastroenterol. 2016;111(1):105–14.CrossRef Liang PS, Wheat CL, Abhat A, Brenner AT, Fagerlin A, Hayward RA, et al. Adherence to competing strategies for colorectal cancer screening over 3 years. Am J Gastroenterol. 2016;111(1):105–14.CrossRef
23.
go back to reference Jensen CD, Corley DA, Quinn VP, Doubeni CA, Zauber AG, Lee JK, et al. Fecal immunochemical test program performance over 4 rounds of annual screening: a retrospective cohort study. Ann Intern Med. 2016;164(7):456–63.CrossRef Jensen CD, Corley DA, Quinn VP, Doubeni CA, Zauber AG, Lee JK, et al. Fecal immunochemical test program performance over 4 rounds of annual screening: a retrospective cohort study. Ann Intern Med. 2016;164(7):456–63.CrossRef
24.
go back to reference Schlichting JA, Mengeling MA, Makki NM, Malhotra A, Halfdanarson TR, Klutts JS, et al. Veterans’ continued participation in an annual fecal immunochemical test mailing program for colorectal cancer screening. J Am Board Fam Med. 2015;28(4):494–7.CrossRef Schlichting JA, Mengeling MA, Makki NM, Malhotra A, Halfdanarson TR, Klutts JS, et al. Veterans’ continued participation in an annual fecal immunochemical test mailing program for colorectal cancer screening. J Am Board Fam Med. 2015;28(4):494–7.CrossRef
25.
go back to reference Coronado GD, Petrik AF, Vollmer WM, Taplin SH, Keast EM, Fields S, et al. Effectiveness of a mailed colorectal cancer screening outreach program in community health clinics: the STOP CRC cluster randomized clinical trial. JAMA Intern Med. 2018;178(9):1174–81.CrossRef Coronado GD, Petrik AF, Vollmer WM, Taplin SH, Keast EM, Fields S, et al. Effectiveness of a mailed colorectal cancer screening outreach program in community health clinics: the STOP CRC cluster randomized clinical trial. JAMA Intern Med. 2018;178(9):1174–81.CrossRef
26.
go back to reference Coronado GD, Vollmer WM, Petrik A, Taplin SH, Burdick TE, Meenan RT, et al. Strategies and opportunities to STOP colon cancer in priority populations: design of a cluster-randomized pragmatic trial. Contemp Clin Trials. 2014;38(2):344–9.CrossRef Coronado GD, Vollmer WM, Petrik A, Taplin SH, Burdick TE, Meenan RT, et al. Strategies and opportunities to STOP colon cancer in priority populations: design of a cluster-randomized pragmatic trial. Contemp Clin Trials. 2014;38(2):344–9.CrossRef
27.
go back to reference Vollmer WM, Green BB, Coronado GD. Analytic challenges arising from the STOP CRC trial: pragmatic solutions for pragmatic problems. EGEMS (Wash DC). 2015;3(1):1200. Vollmer WM, Green BB, Coronado GD. Analytic challenges arising from the STOP CRC trial: pragmatic solutions for pragmatic problems. EGEMS (Wash DC). 2015;3(1):1200.
28.
go back to reference Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–9.CrossRef Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–9.CrossRef
37.
go back to reference van Hoorn R, Tummers M, Booth A, Gerhardus A, Rehfuess E, Hind D, et al. The development of CHAMP: a checklist for the appraisal of moderators and predictors. BMC Med Res Methodol. 2017;17(1):173.CrossRef van Hoorn R, Tummers M, Booth A, Gerhardus A, Rehfuess E, Hind D, et al. The development of CHAMP: a checklist for the appraisal of moderators and predictors. BMC Med Res Methodol. 2017;17(1):173.CrossRef
Metadata
Title
Moderators of the effectiveness of an intervention to increase colorectal cancer screening through mailed fecal immunochemical test kits: results from a pragmatic randomized trial
Authors
Elizabeth A. O’Connor
William M. Vollmer
Amanda F. Petrik
Beverly B. Green
Gloria D. Coronado
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Trials / Issue 1/2020
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-4027-7

Other articles of this Issue 1/2020

Trials 1/2020 Go to the issue