Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 4/2024

Open Access 01-04-2024 | Colorectal Cancer | Research

Construction of an immune predictive model and identification of TRIP6 as a prognostic marker and therapeutic target of CRC by integration of single-cell and bulk RNA-seq data

Authors: Wenjun Liu, Xitu Luo, Zilang Zhang, Yepeng Chen, Yongliang Dai, Jianzhong Deng, Chengyu Yang, Hao Liu

Published in: Cancer Immunology, Immunotherapy | Issue 4/2024

Login to get access

Abstract

Background

Investigations elucidating the complex immunological mechanisms involved in colorectal cancer (CRC) and accurately predicting patient outcomes via bulk RNA-Seq analysis have been notably limited. This study aimed to identify the immune status of CRC patients, construct a prognostic model, and identify prognostic signatures via bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq).

Methods

The scRNA-seq data of CRC were downloaded from Gene Expression Omnibus (GEO). The UCSC Xena database was used to obtain bulk RNA-seq data. Differentially expressed gene (DEG), functional enrichment, and random forest analyses were conducted in order to identify core genes associated with colorectal cancer (CRC) that were relevant to prognosis. A molecular immune prediction model was developed using logistic regression after screening features using the least absolute shrinkage and selection operator (LASSO). The differences in immune cell infiltration, mutation, chemotherapeutic drug sensitivity, cellular senescence, and communication between patients who were at high and low risk of CRC according to the predictive model were investigated. The prognostic genes that were closely associated with CRC were identified by random survival forest (RSF) analysis. The expression levels and clinical significance of the hub genes were analyzed in vitro. The LoVo cell line was employed to ascertain the biological role of thyroid hormone receptor-interacting protein 6 (TRIP6).

Results

A total of seven main cell subtypes were identified by scRNA-seq analysis. A molecular immune predictive model was constructed based on the risk scores. The risk score was significantly associated with OS, stage, mutation burden, immune cell infiltration, response to immunotherapy, key pathways, and cell–cell communication. The functions of the six hub genes were determined and further utilized to establish a regulatory network. Our findings unequivocally confirmed that TRIP6 upregulation was verified in the CRC samples. After knocking down TRIP6, cell proliferation, migration, and invasion of LoVo cells were inhibited, and apoptosis was promoted.

Conclusions

The molecular predictive model reliably distinguished the immune status of CRC patients. We further revealed that TRIP6 may act as an oncogene in CRC, making it a promising candidate for targeted therapy and as a prognostic marker for CRC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249PubMedCrossRef
2.
go back to reference Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet 394:1467–1480PubMedCrossRef Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet 394:1467–1480PubMedCrossRef
3.
go back to reference Guren MG (2019) The global challenge of colorectal cancer. Lancet Gastroenterol Hepatol 4:894–895PubMedCrossRef Guren MG (2019) The global challenge of colorectal cancer. Lancet Gastroenterol Hepatol 4:894–895PubMedCrossRef
5.
go back to reference Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135:1079–1099PubMedCrossRef Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135:1079–1099PubMedCrossRef
6.
go back to reference Weiser MR, Gönen M, Chou JF, Kattan MW, Schrag D (2011) Predicting survival after curative colectomy for cancer: individualizing colon cancer staging. J Clin Oncol 29:4796PubMedPubMedCentralCrossRef Weiser MR, Gönen M, Chou JF, Kattan MW, Schrag D (2011) Predicting survival after curative colectomy for cancer: individualizing colon cancer staging. J Clin Oncol 29:4796PubMedPubMedCentralCrossRef
7.
go back to reference Punt CJ, Koopman M, Vermeulen L (2017) From tumor heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 14:235PubMedCrossRef Punt CJ, Koopman M, Vermeulen L (2017) From tumor heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 14:235PubMedCrossRef
8.
go back to reference Lin D, Fan W, Zhang R, Zhao E, Li P, Zhou W et al (2021) Molecular subtype identification and prognosis stratification by a metabolism-related gene expression signature in colorectal cancer. J Transl Med 19:279PubMedPubMedCentralCrossRef Lin D, Fan W, Zhang R, Zhao E, Li P, Zhou W et al (2021) Molecular subtype identification and prognosis stratification by a metabolism-related gene expression signature in colorectal cancer. J Transl Med 19:279PubMedPubMedCentralCrossRef
9.
go back to reference Zhang Y, Zheng L, Zhang L, Hu X, Ren X, Zhang Z et al (2019) Deep single-cell RNA sequencing data of individual T cells from treatment-naïve colorectal cancer patients. Sci Data 6:131PubMedPubMedCentralCrossRef Zhang Y, Zheng L, Zhang L, Hu X, Ren X, Zhang Z et al (2019) Deep single-cell RNA sequencing data of individual T cells from treatment-naïve colorectal cancer patients. Sci Data 6:131PubMedPubMedCentralCrossRef
10.
go back to reference Nip KM, Chiu R, Yang C, Chu J, Mohamadi H, Warren RL et al (2020) RNA-bloom enables reference-free and reference-guided sequence assembly for single-cell transcriptomes. Genome Res 30:1191–1200PubMedPubMedCentralCrossRef Nip KM, Chiu R, Yang C, Chu J, Mohamadi H, Warren RL et al (2020) RNA-bloom enables reference-free and reference-guided sequence assembly for single-cell transcriptomes. Genome Res 30:1191–1200PubMedPubMedCentralCrossRef
11.
go back to reference Noé A, Cargill TN, Nielsen CM, Russell AJC, Barnes E (2020) The application of single-cell RNA sequencing in vaccinology. J Immunol Res 6:8624963 Noé A, Cargill TN, Nielsen CM, Russell AJC, Barnes E (2020) The application of single-cell RNA sequencing in vaccinology. J Immunol Res 6:8624963
12.
go back to reference Srivastava AK, Wang Y, Huang R, Skinner C, Thompson T, Pollard L et al (2016) Single-cell RNA sequencing analysis of the heterogeneity in gene regulatory networks in colorectal cancer. Hum Genomics 10:12PubMedPubMedCentralCrossRef Srivastava AK, Wang Y, Huang R, Skinner C, Thompson T, Pollard L et al (2016) Single-cell RNA sequencing analysis of the heterogeneity in gene regulatory networks in colorectal cancer. Hum Genomics 10:12PubMedPubMedCentralCrossRef
13.
go back to reference Lin W, Li Q, Zhang D, Zhang X, Qi X, Wang Q et al (2021) Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution. Bone Res 9:17PubMedPubMedCentralCrossRef Lin W, Li Q, Zhang D, Zhang X, Qi X, Wang Q et al (2021) Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution. Bone Res 9:17PubMedPubMedCentralCrossRef
14.
go back to reference Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643PubMedCrossRef Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643PubMedCrossRef
15.
go back to reference Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226PubMedPubMedCentralCrossRef Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226PubMedPubMedCentralCrossRef
17.
go back to reference Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M et al (2015) Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47:320–329PubMedCrossRef Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M et al (2015) Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47:320–329PubMedCrossRef
18.
go back to reference Sinicrope FA, Shi Q, Smyrk TC, Thibodeau SN, Dienstmann R, Guinney J et al (2015) Molecular markers identify subtypes of stage III colon cancer associated with patient outcomes. Gastroenterology 148:88–99PubMedCrossRef Sinicrope FA, Shi Q, Smyrk TC, Thibodeau SN, Dienstmann R, Guinney J et al (2015) Molecular markers identify subtypes of stage III colon cancer associated with patient outcomes. Gastroenterology 148:88–99PubMedCrossRef
19.
go back to reference Kamal Y, Schmit SL, Hoehn HJ, Amos CI, Frost HR (2019) Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes. Cancer Res 79:4227–4241PubMedPubMedCentralCrossRef Kamal Y, Schmit SL, Hoehn HJ, Amos CI, Frost HR (2019) Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes. Cancer Res 79:4227–4241PubMedPubMedCentralCrossRef
20.
go back to reference Ma S, Ogino S, Parsana P, Nishihara R, Qian Z, Shen J et al (2018) Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. Genome Biol 19:142PubMedPubMedCentralCrossRef Ma S, Ogino S, Parsana P, Nishihara R, Qian Z, Shen J et al (2018) Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. Genome Biol 19:142PubMedPubMedCentralCrossRef
21.
go back to reference Dienstmann R, Villacampa G, Sveen A, Mason MJ, Niedzwiecki D, Nesbakken A et al (2019) Relative contribution of clinicopathological variables, genomic markers, transcriptomic subtyping and microenvironment features for outcome prediction in stage II/III colorectal cancer. Ann Oncol 30:1622–1629PubMedPubMedCentralCrossRef Dienstmann R, Villacampa G, Sveen A, Mason MJ, Niedzwiecki D, Nesbakken A et al (2019) Relative contribution of clinicopathological variables, genomic markers, transcriptomic subtyping and microenvironment features for outcome prediction in stage II/III colorectal cancer. Ann Oncol 30:1622–1629PubMedPubMedCentralCrossRef
22.
go back to reference Luo W, Xiang W, Gan L, Che J, Li J, Wang Y (2022) Bulk and single-cell transcriptome profiling reveal necroptosis-based molecular classification, tumor microenvironment infiltration characterization, and prognosis prediction in colorectal cancer. J Transl Med 20:235PubMedPubMedCentralCrossRef Luo W, Xiang W, Gan L, Che J, Li J, Wang Y (2022) Bulk and single-cell transcriptome profiling reveal necroptosis-based molecular classification, tumor microenvironment infiltration characterization, and prognosis prediction in colorectal cancer. J Transl Med 20:235PubMedPubMedCentralCrossRef
23.
go back to reference Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F (2022) Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet 54:963–975PubMedPubMedCentralCrossRef Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F (2022) Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet 54:963–975PubMedPubMedCentralCrossRef
24.
go back to reference Gou H, Liang JQ, Zhang L, Chen H, Zhang Y, Li R et al (2011) TRIP6: an adaptor protein that regulates cell motility antiapoptotic signaling and transcriptional activity. Cell Signal 23:1691–1697CrossRef Gou H, Liang JQ, Zhang L, Chen H, Zhang Y, Li R et al (2011) TRIP6: an adaptor protein that regulates cell motility antiapoptotic signaling and transcriptional activity. Cell Signal 23:1691–1697CrossRef
25.
go back to reference Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Bba-Mol Cell Res 1593:115–120 Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Bba-Mol Cell Res 1593:115–120
26.
go back to reference Zhao MK, Wang Y, Murphy K, Yi J, Beckerle MC, Gilmore TD (1999) LIM domain-containing protein trip6 can act as a coactivator for the v-Rel transcription factor. Gene Expr 8:207–217PubMed Zhao MK, Wang Y, Murphy K, Yi J, Beckerle MC, Gilmore TD (1999) LIM domain-containing protein trip6 can act as a coactivator for the v-Rel transcription factor. Gene Expr 8:207–217PubMed
27.
go back to reference Zhao W, Dai Y, Dai T, Xie T, Su X, Li J, Zhou X, Meng K, Zhao X (2017) TRIP6 promotes cell proliferation in hepatocellular carcinoma via suppression of FOXO3a. Biochem Biophys Res Commun 494:594–601PubMedCrossRef Zhao W, Dai Y, Dai T, Xie T, Su X, Li J, Zhou X, Meng K, Zhao X (2017) TRIP6 promotes cell proliferation in hepatocellular carcinoma via suppression of FOXO3a. Biochem Biophys Res Commun 494:594–601PubMedCrossRef
28.
go back to reference Gou H et al (2019) TTPAL promotes colorectal tumorigenesis by stabilizing TRIP6 to activate Wnt/β-catenin signaling. Cancer Res 79:3332–3346PubMedCrossRef Gou H et al (2019) TTPAL promotes colorectal tumorigenesis by stabilizing TRIP6 to activate Wnt/β-catenin signaling. Cancer Res 79:3332–3346PubMedCrossRef
29.
30.
go back to reference Zheng X, Song J, Yu C, Zhou Z, Liu X, Yu J et al (2022) Single-cell transcriptomic profiling unravels the adenoma-initiation role of protein tyrosine kinases during colorectal tumorigenesis. Signal Transduct Target Ther 28(7):60CrossRef Zheng X, Song J, Yu C, Zhou Z, Liu X, Yu J et al (2022) Single-cell transcriptomic profiling unravels the adenoma-initiation role of protein tyrosine kinases during colorectal tumorigenesis. Signal Transduct Target Ther 28(7):60CrossRef
32.
go back to reference Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L et al (2013) Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 10:e1001453PubMedPubMedCentralCrossRef Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L et al (2013) Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 10:e1001453PubMedPubMedCentralCrossRef
33.
go back to reference Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214PubMedPubMedCentralCrossRef Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214PubMedPubMedCentralCrossRef
34.
go back to reference Henry C, M’Bailara K, Mathieu F, Poinsot R, Falissard B (2008) Construction and validation of a dimensional scale exploring mood disorders: MAThyS (Multidimensional Assessment of Thymic States). BMC Psychiatry 8:82PubMedPubMedCentralCrossRef Henry C, M’Bailara K, Mathieu F, Poinsot R, Falissard B (2008) Construction and validation of a dimensional scale exploring mood disorders: MAThyS (Multidimensional Assessment of Thymic States). BMC Psychiatry 8:82PubMedPubMedCentralCrossRef
35.
go back to reference Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C et al (2019) Cell marker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res 47:D721–D728PubMedCrossRef Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C et al (2019) Cell marker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res 47:D721–D728PubMedCrossRef
36.
go back to reference Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632PubMedPubMedCentralCrossRef Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632PubMedPubMedCentralCrossRef
37.
go back to reference Tan Z, Chen X, Zuo J, Fu S, Wang H, Wang J (2023) Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J Transl Med 21:223PubMedPubMedCentralCrossRef Tan Z, Chen X, Zuo J, Fu S, Wang H, Wang J (2023) Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J Transl Med 21:223PubMedPubMedCentralCrossRef
38.
go back to reference Todd JL, Neely ML, Overton R, Durham K, Gulati M, Huang H et al (2019) Peripheral blood proteomic profiling of idiopathic pulmonary fibrosis biomarkers in the multicentre IPF-PRO Registry. Respir Res 20:227PubMedPubMedCentralCrossRef Todd JL, Neely ML, Overton R, Durham K, Gulati M, Huang H et al (2019) Peripheral blood proteomic profiling of idiopathic pulmonary fibrosis biomarkers in the multicentre IPF-PRO Registry. Respir Res 20:227PubMedPubMedCentralCrossRef
39.
go back to reference Ramalingam V, Hwang I (2021) Identification of meat quality determining marker genes in fibroblasts of bovine muscle using transcriptomic profiling. J Agric Food Chem 69:3776–3786PubMedCrossRef Ramalingam V, Hwang I (2021) Identification of meat quality determining marker genes in fibroblasts of bovine muscle using transcriptomic profiling. J Agric Food Chem 69:3776–3786PubMedCrossRef
40.
41.
go back to reference Wu Y, Tao B, Zhang T, Fan Y, Mao R (2019) Pan-cancer analysis reveals disrupted circadian clock associates with T cell exhaustion. Front Immunol 10:2451PubMedPubMedCentralCrossRef Wu Y, Tao B, Zhang T, Fan Y, Mao R (2019) Pan-cancer analysis reveals disrupted circadian clock associates with T cell exhaustion. Front Immunol 10:2451PubMedPubMedCentralCrossRef
43.
go back to reference Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al (2015) Robust enumeration of cell subsets from tissue expression profles. Nat Methods 12(5):453–457PubMedPubMedCentralCrossRef Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al (2015) Robust enumeration of cell subsets from tissue expression profles. Nat Methods 12(5):453–457PubMedPubMedCentralCrossRef
44.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profles. Proc Natl Acad Sci U S A 102:15545–15550PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profles. Proc Natl Acad Sci U S A 102:15545–15550PubMedPubMedCentralCrossRef
46.
go back to reference Kanehisa M, Sato Y (2020) KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 29(1):28–35PubMedCrossRef Kanehisa M, Sato Y (2020) KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 29(1):28–35PubMedCrossRef
47.
go back to reference Consortium, G.O (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43(D1):D1049–D1056CrossRef Consortium, G.O (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43(D1):D1049–D1056CrossRef
48.
go back to reference Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7CrossRef Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7CrossRef
49.
go back to reference Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425PubMedPubMedCentralCrossRef Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425PubMedPubMedCentralCrossRef
50.
go back to reference Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S et al (2013) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D961PubMedCrossRef Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S et al (2013) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D961PubMedCrossRef
51.
go back to reference Paul G, Nancy C, Huang RS (2017) pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE 9:e107468 Paul G, Nancy C, Huang RS (2017) pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE 9:e107468
52.
go back to reference Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756PubMedPubMedCentralCrossRef Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756PubMedPubMedCentralCrossRef
53.
go back to reference Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849PubMedCrossRef Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849PubMedCrossRef
54.
go back to reference Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB et al (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:347–353PubMedPubMedCentralCrossRef Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB et al (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:347–353PubMedPubMedCentralCrossRef
55.
go back to reference Ishwaran BH, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival forests. Ann App Statist 2(3):841–860 Ishwaran BH, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival forests. Ann App Statist 2(3):841–860
56.
go back to reference Tang X, Aljahdali B, Alasiri M, Bamashmous A, Cao F, Dibart S et al (2018) A method for high transfection efficiency in THP-1 suspension cells without PMA treatment. Anal Biochem 544:93–97PubMedCrossRef Tang X, Aljahdali B, Alasiri M, Bamashmous A, Cao F, Dibart S et al (2018) A method for high transfection efficiency in THP-1 suspension cells without PMA treatment. Anal Biochem 544:93–97PubMedCrossRef
57.
go back to reference Hu J, Yang D, Zhang H, Liu W, Zhao Y, Lu H et al (2015) USP22 promotes tumor progression and induces epithelial–mesenchymal transition in lung adenocarcinoma. Lung Cancer 88(3):239–245PubMedCrossRef Hu J, Yang D, Zhang H, Liu W, Zhao Y, Lu H et al (2015) USP22 promotes tumor progression and induces epithelial–mesenchymal transition in lung adenocarcinoma. Lung Cancer 88(3):239–245PubMedCrossRef
58.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRef Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRef
59.
go back to reference Liu W, Qian K, Wei X, Deng H, Zhao B, Chen Q et al (2017) miR-27a promotes proliferation, migration, and invasion of colorectal cancer by targeting FAM172A and acts as a diagnostic and prognostic biomarker. Oncol Rep 37(6):3554–3564PubMedCrossRef Liu W, Qian K, Wei X, Deng H, Zhao B, Chen Q et al (2017) miR-27a promotes proliferation, migration, and invasion of colorectal cancer by targeting FAM172A and acts as a diagnostic and prognostic biomarker. Oncol Rep 37(6):3554–3564PubMedCrossRef
60.
go back to reference Khaliq AM, Erdogan C, Kurt Z, Turgut SS, Grunvald MW, Rand T et al (2022) Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol 23:113PubMedPubMedCentralCrossRef Khaliq AM, Erdogan C, Kurt Z, Turgut SS, Grunvald MW, Rand T et al (2022) Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol 23:113PubMedPubMedCentralCrossRef
61.
go back to reference Weng S, Liu Z, Ren X, Xu H, Ge X, Ren Y et al (2022) SCG2: A Prognostic Marker That Pinpoints Chemotherapy and Immunotherapy in Colorectal Cancer. Front Immunol 13:873871PubMedPubMedCentralCrossRef Weng S, Liu Z, Ren X, Xu H, Ge X, Ren Y et al (2022) SCG2: A Prognostic Marker That Pinpoints Chemotherapy and Immunotherapy in Colorectal Cancer. Front Immunol 13:873871PubMedPubMedCentralCrossRef
62.
go back to reference Roelands J, van der Ploeg M, Ijsselsteijn ME, Dang H, Boonstra JJ, Hardwick JCH et al (2023) Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumorigenesis. Gut 72:1326–1339PubMedCrossRef Roelands J, van der Ploeg M, Ijsselsteijn ME, Dang H, Boonstra JJ, Hardwick JCH et al (2023) Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumorigenesis. Gut 72:1326–1339PubMedCrossRef
63.
go back to reference Poonpanichakul T, Shiao MS, Jiravejchakul N, Matangkasombut P, Sirachainan E, Charoensawan V et al (2021) Capturing tumor heterogeneity in preand postchemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Biosci Rep 41:BSR20212093PubMedPubMedCentralCrossRef Poonpanichakul T, Shiao MS, Jiravejchakul N, Matangkasombut P, Sirachainan E, Charoensawan V et al (2021) Capturing tumor heterogeneity in preand postchemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Biosci Rep 41:BSR20212093PubMedPubMedCentralCrossRef
64.
go back to reference Liu Y, Hu J, Liu D, Zhou S, Liao J, Liao G et al (2020) Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. Theranostics 10:8851–8862PubMedPubMedCentralCrossRef Liu Y, Hu J, Liu D, Zhou S, Liao J, Liao G et al (2020) Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. Theranostics 10:8851–8862PubMedPubMedCentralCrossRef
65.
go back to reference Zheng H, Liu H, Ge Y, Wang X (2021) Integrated single-cell and bulk RNA sequencing analysis identifies a cancer associated fibroblast-related signature for predicting prognosis and therapeutic responses in colorectal cancer. Cancer Cell Int 21:1–21CrossRef Zheng H, Liu H, Ge Y, Wang X (2021) Integrated single-cell and bulk RNA sequencing analysis identifies a cancer associated fibroblast-related signature for predicting prognosis and therapeutic responses in colorectal cancer. Cancer Cell Int 21:1–21CrossRef
67.
go back to reference Buttacavoli M, Di Cara G, Roz E, Pucci-Minafra I, Feo S, Cancemi P (2021) Integrated Multi-Omics Investigations of Metalloproteinases in Colon Cancer: Focus on MMP2 and MMP9. Int J Mol Sci 22:12389PubMedPubMedCentralCrossRef Buttacavoli M, Di Cara G, Roz E, Pucci-Minafra I, Feo S, Cancemi P (2021) Integrated Multi-Omics Investigations of Metalloproteinases in Colon Cancer: Focus on MMP2 and MMP9. Int J Mol Sci 22:12389PubMedPubMedCentralCrossRef
68.
go back to reference Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian Y et al (2020) In colorectal cancer cells with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance. Gastroenterology 159:2163–2180PubMedCrossRef Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian Y et al (2020) In colorectal cancer cells with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance. Gastroenterology 159:2163–2180PubMedCrossRef
69.
go back to reference Zhang J, Wu Y, Shen Z (2023) Integration of bulk RNA sequencing data and single-cell RNA sequencing analysis on the heterogeneity in patients with colorectal cancer. Funct Integr Genomics 23:209PubMedPubMedCentralCrossRef Zhang J, Wu Y, Shen Z (2023) Integration of bulk RNA sequencing data and single-cell RNA sequencing analysis on the heterogeneity in patients with colorectal cancer. Funct Integr Genomics 23:209PubMedPubMedCentralCrossRef
70.
go back to reference Liu X, Xu X, Wu Z, Shan Q, Wang Z, Wu Z et al (2022) Integrated single-cell RNA-seq analysis identifies immune heterogeneity associated with KRAS/TP53 mutation status and tumor-sideness in colorectal cancers. Front Immunol 13:961350PubMedPubMedCentralCrossRef Liu X, Xu X, Wu Z, Shan Q, Wang Z, Wu Z et al (2022) Integrated single-cell RNA-seq analysis identifies immune heterogeneity associated with KRAS/TP53 mutation status and tumor-sideness in colorectal cancers. Front Immunol 13:961350PubMedPubMedCentralCrossRef
71.
72.
go back to reference Gou H, Wong CC, Chen H, Shang H, Su H, Zhai J et al (2023) TRIP6 disrupts tight junctions to promote metastasis and drug resistance and is a therapeutic target in colorectal cancer. Cancer Lett 10:216438CrossRef Gou H, Wong CC, Chen H, Shang H, Su H, Zhai J et al (2023) TRIP6 disrupts tight junctions to promote metastasis and drug resistance and is a therapeutic target in colorectal cancer. Cancer Lett 10:216438CrossRef
73.
go back to reference Ling Y, Cao C, Li S, Qiu M, Shen G, Chen Z et al (2019) TRIP6, as a target of miR-7, regulates the proliferation and metastasis of colorectal cancer cells. Biochem Biophys Res Commun 514:231–238PubMedCrossRef Ling Y, Cao C, Li S, Qiu M, Shen G, Chen Z et al (2019) TRIP6, as a target of miR-7, regulates the proliferation and metastasis of colorectal cancer cells. Biochem Biophys Res Commun 514:231–238PubMedCrossRef
Metadata
Title
Construction of an immune predictive model and identification of TRIP6 as a prognostic marker and therapeutic target of CRC by integration of single-cell and bulk RNA-seq data
Authors
Wenjun Liu
Xitu Luo
Zilang Zhang
Yepeng Chen
Yongliang Dai
Jianzhong Deng
Chengyu Yang
Hao Liu
Publication date
01-04-2024
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 4/2024
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-024-03658-w

Other articles of this Issue 4/2024

Cancer Immunology, Immunotherapy 4/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine