Skip to main content
Top
Published in: Journal of Neurology 11/2015

01-11-2015 | Original Communication

Color vision impairment in multiple sclerosis points to retinal ganglion cell damage

Authors: E. J. Lampert, M. Andorra, R. Torres-Torres, S. Ortiz-Pérez, S. Llufriu, M. Sepúlveda, N. Sola, A. Saiz, B. Sánchez-Dalmau, P. Villoslada, Elena H. Martínez-Lapiscina

Published in: Journal of Neurology | Issue 11/2015

Login to get access

Abstract

Multiple Sclerosis (MS) results in color vision impairment regardless of optic neuritis (ON). The exact location of injury remains undefined. The objective of this study is to identify the region leading to dyschromatopsia in MS patients’ NON-eyes. We evaluated Spearman correlations between color vision and measures of different regions in the afferent visual pathway in 106 MS patients. Regions with significant correlations were included in logistic regression models to assess their independent role in dyschromatopsia. We evaluated color vision with Hardy–Rand–Rittler plates and retinal damage using Optical Coherence Tomography. We ran SIENAX to measure Normalized Brain Parenchymal Volume (NBPV), FIRST for thalamus volume and Freesurfer for visual cortex areas. We found moderate, significant correlations between color vision and macular retinal nerve fiber layer  (rho = 0.289, p = 0.003), ganglion cell complex (GCC = GCIP) (rho = 0.353, p < 0.001), thalamus (rho = 0.361, p < 0.001), and lesion volume within the optic radiations (rho = –0.230, p = 0.030). Only GCC thickness remained significant (p = 0.023) in the logistic regression model. In the final model including lesion load and NBPV as markers of diffuse neuroaxonal damage, GCC remained associated with dyschromatopsia [OR = 0.88 95 % CI (0.80–0.97) p = 0.016]. This association remained significant when we also added sex, age, and disease duration as covariates in the regression model. Dyschromatopsia in NON-eyes is due to damage of retinal ganglion cells (RGC) in MS. Color vision can serve as a marker of RGC damage in MS.
Literature
3.
go back to reference Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM (2001) Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 124:1813–1820CrossRefPubMed Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM (2001) Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 124:1813–1820CrossRefPubMed
4.
go back to reference Sepulcre J, Goñi J, Masdeu JC, Bejarano B, Vélez de Mendizábal N, Toledo JB, Villoslada P (2009) Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch Neurol 66:173–179PubMed Sepulcre J, Goñi J, Masdeu JC, Bejarano B, Vélez de Mendizábal N, Toledo JB, Villoslada P (2009) Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch Neurol 66:173–179PubMed
5.
go back to reference Castro SMC, Damasceno A, Damasceno BP, Vasconcellos JP, Reis F, Iyeyasu JN, Carvalho KM (2013) Visual pathway abnormalities were found in most multiple sclerosis patients despite history of previous optic neuritis. Arq Neuropsiquiatr 71:437–441CrossRefPubMed Castro SMC, Damasceno A, Damasceno BP, Vasconcellos JP, Reis F, Iyeyasu JN, Carvalho KM (2013) Visual pathway abnormalities were found in most multiple sclerosis patients despite history of previous optic neuritis. Arq Neuropsiquiatr 71:437–441CrossRefPubMed
6.
go back to reference Martínez-Lapiscina EH, Ortiz-Pérez S, Fraga-Pumar E, Martínez-Heras E, Gabilondo I, Llufriu S, Bullich S, Figueras M, Saiz A, Sánchez-Dalmau B, Villoslada P (2014) Colour vision impairment is associated with disease severity in multiple sclerosis. Mult Scler 20:1207–1216CrossRefPubMed Martínez-Lapiscina EH, Ortiz-Pérez S, Fraga-Pumar E, Martínez-Heras E, Gabilondo I, Llufriu S, Bullich S, Figueras M, Saiz A, Sánchez-Dalmau B, Villoslada P (2014) Colour vision impairment is associated with disease severity in multiple sclerosis. Mult Scler 20:1207–1216CrossRefPubMed
7.
go back to reference Moura ALDA, Teixeira RAA, Oiwa NN, Costa MF, Feitosa-Santana C, Callegaro D, Hamer RD, Ventura DF (2008) Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge Colour Test. Vis Neurosci 25:463–468CrossRefPubMed Moura ALDA, Teixeira RAA, Oiwa NN, Costa MF, Feitosa-Santana C, Callegaro D, Hamer RD, Ventura DF (2008) Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge Colour Test. Vis Neurosci 25:463–468CrossRefPubMed
8.
go back to reference Villoslada P, Cuneo A, Gelfand J, Hauser SL, Green A (2012) Color vision is strongly associated with retinal thinning in multiple sclerosis. Mult Scler 18:991–999CrossRefPubMed Villoslada P, Cuneo A, Gelfand J, Hauser SL, Green A (2012) Color vision is strongly associated with retinal thinning in multiple sclerosis. Mult Scler 18:991–999CrossRefPubMed
9.
go back to reference Martínez-Lapiscina EH, Fraga-Pumar E, Gabilondo I, Martínez-Heras E, Torres-Torres R, Ortiz-Pérez S, Llufriu S, Tercero A, Andorra M, Roca MF, Lampert E, Zubizarreta I, Saiz A, Sanchez-Dalmau B, Villoslada P (2014) The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS. BMC Res Notes 7:910PubMedCentralCrossRefPubMed Martínez-Lapiscina EH, Fraga-Pumar E, Gabilondo I, Martínez-Heras E, Torres-Torres R, Ortiz-Pérez S, Llufriu S, Tercero A, Andorra M, Roca MF, Lampert E, Zubizarreta I, Saiz A, Sanchez-Dalmau B, Villoslada P (2014) The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS. BMC Res Notes 7:910PubMedCentralCrossRefPubMed
10.
go back to reference Cleary PA, Beck RW, Anderson MM, Kenny DJ, Backlund JY, Gilbert PR (1993) Design, methods, and conduct of the Optic Neuritis Treatment Trial. Control Clin Trials 14:123–142CrossRefPubMed Cleary PA, Beck RW, Anderson MM, Kenny DJ, Backlund JY, Gilbert PR (1993) Design, methods, and conduct of the Optic Neuritis Treatment Trial. Control Clin Trials 14:123–142CrossRefPubMed
11.
go back to reference Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, Fraga-Pumar E, Llufriu S, Ortiz S, Bullich S, Sepulveda M, Falcon C, Berenguer J, Saiz A, Sanchez-Dalmau B, Villoslada P (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75:98–107CrossRefPubMed Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, Fraga-Pumar E, Llufriu S, Ortiz S, Bullich S, Sepulveda M, Falcon C, Berenguer J, Saiz A, Sanchez-Dalmau B, Villoslada P (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75:98–107CrossRefPubMed
12.
go back to reference Cole BL, Lian KY, Lakkis C (2006) The new Richmond HRR pseudoisochromatic test for colour vision is better than the Ishihara test. Clin Exp Optom 89:73–80CrossRefPubMed Cole BL, Lian KY, Lakkis C (2006) The new Richmond HRR pseudoisochromatic test for colour vision is better than the Ishihara test. Clin Exp Optom 89:73–80CrossRefPubMed
13.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMed
14.
go back to reference Sdika M, Pelletier D (2009) Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum Brain Mapp 30:1060–1067CrossRefPubMed Sdika M, Pelletier D (2009) Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum Brain Mapp 30:1060–1067CrossRefPubMed
15.
go back to reference Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BT, Mohlberg H, Amunts K, Zilles K (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980PubMedCentralCrossRefPubMed Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BT, Mohlberg H, Amunts K, Zilles K (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980PubMedCentralCrossRefPubMed
16.
go back to reference Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMed Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMed
17.
go back to reference Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649PubMed Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649PubMed
18.
go back to reference Beauchamp MS, Haxby JV, Jennings JE, DeYoe EA (1999) An fMRI version of the farnsworth-munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb Cortex 9:257–263CrossRefPubMed Beauchamp MS, Haxby JV, Jennings JE, DeYoe EA (1999) An fMRI version of the farnsworth-munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb Cortex 9:257–263CrossRefPubMed
19.
go back to reference Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335CrossRefPubMed Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335CrossRefPubMed
20.
go back to reference Saidha S, Al-Louzi O, Ratchford JN, Bhargava P, Oh J, Newsome SD, Prince JL, Pham D, Roy S, van Zijl P, Balcer LJ, Frohman EM, Reich DS, Crainiceanu C, Calabresi PA (2015) Optical coherence tomography reflects brain atrophy in MS: a four year study. Ann Neurol. doi:10.1002/ana.24487 Saidha S, Al-Louzi O, Ratchford JN, Bhargava P, Oh J, Newsome SD, Prince JL, Pham D, Roy S, van Zijl P, Balcer LJ, Frohman EM, Reich DS, Crainiceanu C, Calabresi PA (2015) Optical coherence tomography reflects brain atrophy in MS: a four year study. Ann Neurol. doi:10.​1002/​ana.​24487
21.
go back to reference Heesen C, Böhm J, Reich C, Kasper J, Goebel M, Gold SM (2008) Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler 14:988–991CrossRefPubMed Heesen C, Böhm J, Reich C, Kasper J, Goebel M, Gold SM (2008) Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler 14:988–991CrossRefPubMed
22.
go back to reference Huna-Baron R, Glovinsky Y, Habot-Wilner Z (2013) Comparison between Hardy-Rand-Rittler 4th edition and Ishihara color plate tests for detection of dyschromatopsia in optic neuropathy. Graefes Arch Clin Exp Ophthalmol 251:585–589CrossRefPubMed Huna-Baron R, Glovinsky Y, Habot-Wilner Z (2013) Comparison between Hardy-Rand-Rittler 4th edition and Ishihara color plate tests for detection of dyschromatopsia in optic neuropathy. Graefes Arch Clin Exp Ophthalmol 251:585–589CrossRefPubMed
23.
go back to reference Walter SD, Ishikawa H, Galetta KM, Sakai RE, Feller DJ, Henderson SB, Wilson JA, Maguire MG, Galetta SL, Frohman E, Calabresi PA, Schuman JS, Balcer LJ (2012) Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 119:1250–1257PubMedCentralCrossRefPubMed Walter SD, Ishikawa H, Galetta KM, Sakai RE, Feller DJ, Henderson SB, Wilson JA, Maguire MG, Galetta SL, Frohman E, Calabresi PA, Schuman JS, Balcer LJ (2012) Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 119:1250–1257PubMedCentralCrossRefPubMed
24.
go back to reference Hansen KA, Kay KN, Gallant JL (2007) Topographic organization in and near human visual area V4. J Neurosci 27:11896–11911CrossRefPubMed Hansen KA, Kay KN, Gallant JL (2007) Topographic organization in and near human visual area V4. J Neurosci 27:11896–11911CrossRefPubMed
25.
go back to reference Heywood CA, Gadotti A, Cowey A (1992) Cortical area V4 and its role in the perception of color. J Neurosci 12:4056–4065PubMed Heywood CA, Gadotti A, Cowey A (1992) Cortical area V4 and its role in the perception of color. J Neurosci 12:4056–4065PubMed
Metadata
Title
Color vision impairment in multiple sclerosis points to retinal ganglion cell damage
Authors
E. J. Lampert
M. Andorra
R. Torres-Torres
S. Ortiz-Pérez
S. Llufriu
M. Sepúlveda
N. Sola
A. Saiz
B. Sánchez-Dalmau
P. Villoslada
Elena H. Martínez-Lapiscina
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 11/2015
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-015-7876-3

Other articles of this Issue 11/2015

Journal of Neurology 11/2015 Go to the issue