Skip to main content
Top
Published in: BMC Psychiatry 1/2018

Open Access 01-12-2018 | Research article

Collective interaction effects associated with mammalian behavioral traits reveal genetic factors connecting fear and hemostasis

Authors: Hyung Jun Woo, Jaques Reifman

Published in: BMC Psychiatry | Issue 1/2018

Login to get access

Abstract

Background

Investigation of the genetic architectures that influence the behavioral traits of animals can provide important insights into human neuropsychiatric phenotypes. These traits, however, are often highly polygenic, with individual loci contributing only small effects to the overall association. The polygenicity makes it challenging to explain, for example, the widely observed comorbidity between stress and cardiac disease.

Methods

We present an algorithm for inferring the collective association of a large number of interacting gene variants with a quantitative trait. Using simulated data, we demonstrate that by taking into account the non-uniform distribution of genotypes within a cohort, we can achieve greater power than regression-based methods for high-dimensional inference.

Results

We analyzed genome-wide data sets of outbred mice and pet dogs, and found neurobiological pathways whose associations with behavioral traits arose primarily from interaction effects: γ-carboxylated coagulation factors and downstream neuronal signaling were highly associated with conditioned fear, consistent with our previous finding in human post-traumatic stress disorder (PTSD) data. Prepulse inhibition in mice was associated with serotonin transporter and platelet homeostasis, and noise-induced fear in dogs with hemostasis.

Conclusions

Our findings suggest a novel explanation for the observed comorbidity between PTSD/anxiety and cardiovascular diseases: key coagulation factors modulating hemostasis also regulate synaptic plasticity affecting the learning and extinction of fear.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bendesky A, Kwon YM, Lassance JM, Lewarch CL, Yao S, Peterson BK, et al. The genetic basis of parental care evolution in monogamous mice. Nature. 2017;544:434–9.CrossRefPubMedPubMedCentral Bendesky A, Kwon YM, Lassance JM, Lewarch CL, Yao S, Peterson BK, et al. The genetic basis of parental care evolution in monogamous mice. Nature. 2017;544:434–9.CrossRefPubMedPubMedCentral
2.
go back to reference Weber JN, Peterson BK, Hoekstra HE. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature. 2013;493:402–5.CrossRefPubMed Weber JN, Peterson BK, Hoekstra HE. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature. 2013;493:402–5.CrossRefPubMed
3.
go back to reference Sousa N, Almeida OF, Wotjak CT. A hitchhiker's guide to behavioral analysis in laboratory rodents. Genes Brain Behav. 2006:5 Suppl 2:5–24. Sousa N, Almeida OF, Wotjak CT. A hitchhiker's guide to behavioral analysis in laboratory rodents. Genes Brain Behav. 2006:5 Suppl 2:5–24.
4.
go back to reference Wang GD, Xie HB, Peng MS, Irwin D, Zhang YP. Domestication genomics: evidence from animals. Annu Rev Anim Biosci. 2014;2:65–84.CrossRefPubMed Wang GD, Xie HB, Peng MS, Irwin D, Zhang YP. Domestication genomics: evidence from animals. Annu Rev Anim Biosci. 2014;2:65–84.CrossRefPubMed
5.
go back to reference Ilska J, Haskell MJ, Blott SC, Sanchez-Molano E, Polgar Z, Lofgren SE, et al. Genetic characterization of dog personality traits. Genetics. 2017;206:1101–11.CrossRefPubMedPubMedCentral Ilska J, Haskell MJ, Blott SC, Sanchez-Molano E, Polgar Z, Lofgren SE, et al. Genetic characterization of dog personality traits. Genetics. 2017;206:1101–11.CrossRefPubMedPubMedCentral
7.
go back to reference 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.CrossRef 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.CrossRef
8.
go back to reference Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L, Cosgrove C, et al. Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nat Genet. 2016;48:912–8.CrossRefPubMedPubMedCentral Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L, Cosgrove C, et al. Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nat Genet. 2016;48:912–8.CrossRefPubMedPubMedCentral
9.
go back to reference Parker CC, Gopalakrishnan S, Carbonetto P, Gonzales NM, Leung E, Park YJ, et al. Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nat Genet. 2016;48:919–26.CrossRefPubMedPubMedCentral Parker CC, Gopalakrishnan S, Carbonetto P, Gonzales NM, Leung E, Park YJ, et al. Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nat Genet. 2016;48:919–26.CrossRefPubMedPubMedCentral
10.
go back to reference Woo HJ, Yu C, Kumar K, Gold B, Reifman J. Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism. BMC Genomics. 2016;17:695.CrossRefPubMedPubMedCentral Woo HJ, Yu C, Kumar K, Gold B, Reifman J. Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism. BMC Genomics. 2016;17:695.CrossRefPubMedPubMedCentral
11.
go back to reference Woo HJ, Yu C, Reifman J. Collective genetic interaction effects and the role of antigen-presenting cells in autoimmune diseases. PLoS One. 2017;12:e0169918.CrossRefPubMedPubMedCentral Woo HJ, Yu C, Reifman J. Collective genetic interaction effects and the role of antigen-presenting cells in autoimmune diseases. PLoS One. 2017;12:e0169918.CrossRefPubMedPubMedCentral
12.
go back to reference Woo HJ, Yu C, Kumar K, Reifman J. Large-scale interaction effects reveal missing heritability in schizophrenia, bipolar disorder and posttraumatic stress disorder. Transl Psychiatry. 2017;7:e1089.CrossRefPubMedPubMedCentral Woo HJ, Yu C, Kumar K, Reifman J. Large-scale interaction effects reveal missing heritability in schizophrenia, bipolar disorder and posttraumatic stress disorder. Transl Psychiatry. 2017;7:e1089.CrossRefPubMedPubMedCentral
13.
go back to reference Laurie C, Wang S, Carlini-Garcia LA, Zeng ZB. Mapping epistatic quantitative trait loci. BMC Genomics. 2014;15:112.CrossRef Laurie C, Wang S, Carlini-Garcia LA, Zeng ZB. Mapping epistatic quantitative trait loci. BMC Genomics. 2014;15:112.CrossRef
14.
go back to reference Crawford L, Zeng P, Mukherjee S, Zhou X. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet. 2017;13:e1006869.CrossRefPubMedPubMedCentral Crawford L, Zeng P, Mukherjee S, Zhou X. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet. 2017;13:e1006869.CrossRefPubMedPubMedCentral
15.
go back to reference Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15:722–33.CrossRefPubMed Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15:722–33.CrossRefPubMed
16.
go back to reference Städler N, Dondelinger F, Hill SM, Akbani R, Lu Y, Mills GB, Mukherjee S. Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study. Bioinformatics. 2017;33:2890–6.CrossRefPubMedPubMedCentral Städler N, Dondelinger F, Hill SM, Akbani R, Lu Y, Mills GB, Mukherjee S. Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study. Bioinformatics. 2017;33:2890–6.CrossRefPubMedPubMedCentral
17.
go back to reference de Los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 2013;9:e1003608.CrossRefPubMedPubMedCentral de Los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 2013;9:e1003608.CrossRefPubMedPubMedCentral
18.
go back to reference Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.CrossRefPubMedCentral Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.CrossRefPubMedCentral
19.
go back to reference Gagliano SA. It’s all in the brain: a review of available functional genomic annotations. Biol Psychiatry. 2017;81:478–83.CrossRefPubMed Gagliano SA. It’s all in the brain: a review of available functional genomic annotations. Biol Psychiatry. 2017;81:478–83.CrossRefPubMed
20.
go back to reference Gagliano SA, Ravji R, Barnes MR, Weale ME, Knight J. Smoking gun or circumstantial evidence? Comparison of statistical learning methods using functional annotations for prioritizing risk variants. Sci Rep. 2015;5:13373.CrossRefPubMedPubMedCentral Gagliano SA, Ravji R, Barnes MR, Weale ME, Knight J. Smoking gun or circumstantial evidence? Comparison of statistical learning methods using functional annotations for prioritizing risk variants. Sci Rep. 2015;5:13373.CrossRefPubMedPubMedCentral
21.
22.
go back to reference Bourgognon JM, Schiavon E, Salah-Uddin H, Skrzypiec AE, Attwood BK, Shah RS, et al. Regulation of neuronal plasticity and fear by a dynamic change in PAR1-G protein coupling in the amygdala. Mol Psychiatry. 2013;18:1136–45.CrossRefPubMed Bourgognon JM, Schiavon E, Salah-Uddin H, Skrzypiec AE, Attwood BK, Shah RS, et al. Regulation of neuronal plasticity and fear by a dynamic change in PAR1-G protein coupling in the amygdala. Mol Psychiatry. 2013;18:1136–45.CrossRefPubMed
23.
go back to reference Ben Shimon M, Lenz M, Ikenberg B, Becker D, Shavit Stein E, Chapman J, et al. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci. 2015;9:151.CrossRefPubMedPubMedCentral Ben Shimon M, Lenz M, Ikenberg B, Becker D, Shavit Stein E, Chapman J, et al. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci. 2015;9:151.CrossRefPubMedPubMedCentral
24.
go back to reference Liang J, Le TH, Edwards DRV, Tayo BO, Gaulton KJ, Smith JA, et al. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations. PLoS Genet. 2017;13:e1006728.CrossRefPubMedPubMedCentral Liang J, Le TH, Edwards DRV, Tayo BO, Gaulton KJ, Smith JA, et al. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations. PLoS Genet. 2017;13:e1006728.CrossRefPubMedPubMedCentral
26.
go back to reference Pollard HB, Shivakumar C, Starr J, Eidelman O, Jacobowitz DM, Dalgard CL, et al. "Soldier's heart": a genetic basis for elevated cardiovascular disease risk associated with post-traumatic stress disorder. Front Mol Neurosci. 2016;9:87.CrossRefPubMedPubMedCentral Pollard HB, Shivakumar C, Starr J, Eidelman O, Jacobowitz DM, Dalgard CL, et al. "Soldier's heart": a genetic basis for elevated cardiovascular disease risk associated with post-traumatic stress disorder. Front Mol Neurosci. 2016;9:87.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 2nd ed. New York: Springer; 2009.CrossRef Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 2nd ed. New York: Springer; 2009.CrossRef
30.
go back to reference Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19.CrossRefPubMed Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19.CrossRefPubMed
31.
go back to reference Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2016;44:D481–7.CrossRefPubMed Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2016;44:D481–7.CrossRefPubMed
32.
go back to reference Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.CrossRefPubMedPubMedCentral Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.CrossRefPubMedPubMedCentral
35.
go back to reference Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 2010;90:419–63.CrossRefPubMedPubMedCentral Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 2010;90:419–63.CrossRefPubMedPubMedCentral
36.
go back to reference Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am. 2007;21:1–11.CrossRefPubMed Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am. 2007;21:1–11.CrossRefPubMed
37.
go back to reference Noorbakhsh F, Vergnolle N, Hollenberg MD, Power C. Proteinase-activated receptors in the nervous system. Nat Rev Neurosci. 2003;4:981–90.CrossRefPubMed Noorbakhsh F, Vergnolle N, Hollenberg MD, Power C. Proteinase-activated receptors in the nervous system. Nat Rev Neurosci. 2003;4:981–90.CrossRefPubMed
38.
go back to reference Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiol Rev. 2004;84:579–621.CrossRefPubMed Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiol Rev. 2004;84:579–621.CrossRefPubMed
39.
40.
go back to reference Nievergelt CM, Maihofer AX, Mustapic M, Yurgil KA, Schork NJ, Miller MW, et al. Genomic predictors of combat stress vulnerability and resilience in U.S. marines: a genome-wide association study across multiple ancestries implicates PRTFDC1 as a potential PTSD gene. Psychoneuroendocrinology. 2015;51:459–71.CrossRefPubMed Nievergelt CM, Maihofer AX, Mustapic M, Yurgil KA, Schork NJ, Miller MW, et al. Genomic predictors of combat stress vulnerability and resilience in U.S. marines: a genome-wide association study across multiple ancestries implicates PRTFDC1 as a potential PTSD gene. Psychoneuroendocrinology. 2015;51:459–71.CrossRefPubMed
41.
go back to reference Bramham CR, Wells DG. Dendritic mRNA: transport, translation and function. Nat Rev Neurosci. 2007;8:776–89.CrossRefPubMed Bramham CR, Wells DG. Dendritic mRNA: transport, translation and function. Nat Rev Neurosci. 2007;8:776–89.CrossRefPubMed
42.
go back to reference Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–31.CrossRefPubMed Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–31.CrossRefPubMed
43.
go back to reference Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci. 2008;9:85–96.CrossRefPubMed Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci. 2008;9:85–96.CrossRefPubMed
44.
go back to reference Brocke B, Armbruster D, Muller J, Hensch T, Jacob CP, Lesch KP, et al. Serotonin transporter gene variation impacts innate fear processing: acoustic startle response and emotional startle. Mol Psychiatry. 2006;11:1106–12.CrossRefPubMed Brocke B, Armbruster D, Muller J, Hensch T, Jacob CP, Lesch KP, et al. Serotonin transporter gene variation impacts innate fear processing: acoustic startle response and emotional startle. Mol Psychiatry. 2006;11:1106–12.CrossRefPubMed
46.
go back to reference Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, et al. A negative regulator of MAP kinase causes depressive behavior. Nat Med. 2010;16:1328–32.CrossRefPubMedPubMedCentral Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, et al. A negative regulator of MAP kinase causes depressive behavior. Nat Med. 2010;16:1328–32.CrossRefPubMedPubMedCentral
47.
go back to reference Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry. 2007;61:661–70.CrossRefPubMed Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry. 2007;61:661–70.CrossRefPubMed
49.
50.
go back to reference Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, et al. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature. 2011;477:349–53.CrossRefPubMedPubMedCentral Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, et al. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature. 2011;477:349–53.CrossRefPubMedPubMedCentral
51.
go back to reference Hartlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U, Anugula S, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42:332–43.CrossRefPubMed Hartlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U, Anugula S, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42:332–43.CrossRefPubMed
52.
go back to reference Breen MS, Maihofer AX, Glatt SJ, Tylee DS, Chandler SD, Tsuang MT, et al. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol Psychiatry. 2015;20:1538–45.CrossRefPubMedPubMedCentral Breen MS, Maihofer AX, Glatt SJ, Tylee DS, Chandler SD, Tsuang MT, et al. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol Psychiatry. 2015;20:1538–45.CrossRefPubMedPubMedCentral
53.
go back to reference Marcinkiewcz CA, Mazzone CM, D'Agostino G, Halladay LR, Hardaway JA, DiBerto JF, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature. 2016;537:97–101.CrossRefPubMedPubMedCentral Marcinkiewcz CA, Mazzone CM, D'Agostino G, Halladay LR, Hardaway JA, DiBerto JF, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature. 2016;537:97–101.CrossRefPubMedPubMedCentral
54.
go back to reference Ditzen C, Varadarajulu J, Czibere L, Gonik M, Targosz BS, Hambsch B, et al. Proteomic-based genotyping in a mouse model of trait anxiety exposes disease-relevant pathways. Mol Psychiatry. 2010;15:702–11.CrossRefPubMed Ditzen C, Varadarajulu J, Czibere L, Gonik M, Targosz BS, Hambsch B, et al. Proteomic-based genotyping in a mouse model of trait anxiety exposes disease-relevant pathways. Mol Psychiatry. 2010;15:702–11.CrossRefPubMed
Metadata
Title
Collective interaction effects associated with mammalian behavioral traits reveal genetic factors connecting fear and hemostasis
Authors
Hyung Jun Woo
Jaques Reifman
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2018
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-018-1753-4

Other articles of this Issue 1/2018

BMC Psychiatry 1/2018 Go to the issue