Skip to main content
Top
Published in: Osteoporosis International 4/2013

01-04-2013 | Short Communication

Cold-activated brown adipose tissue is an independent predictor of higher bone mineral density in women

Authors: P. Lee, R. J. Brychta, M. T. Collins, J. Linderman, S. Smith, P. Herscovitch, C. Millo, K. Y. Chen, F. S. Celi

Published in: Osteoporosis International | Issue 4/2013

Login to get access

Abstract

Summary

In animals, defective brown adipogenesis leads to bone loss. Whether brown adipose tissue (BAT) mass relates to bone mineral density (BMD) in humans is unclear. We determined the relationship between BAT mass and BMD by cold-stimulated positron-emission tomography (PET) and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Higher BAT mass was associated with higher BMD in healthy women, but not in men, independent of age and body composition.

Introduction

Contrary to the traditional belief that BAT is present only in infants, recent studies revealed significant depots of BAT present in adult humans. In animals, defective brown adipogenesis leads to bone loss. While white adipose tissue mass is a known determinant of BMD in humans, the relationship between BAT and BMD in humans is unclear. We thus examined the relationship between BAT and BMD in healthy adults.

Methods

BAT volume (ml) and activity (standard uptake value) were determined by 18F-fluorodeoxyglucose PET after overnight mild cold exposure at 19 °C, and BMD was determined by DXA.

Results

Among 24 healthy adults (age 28 ± 1 years, F = 10), BAT volumes were 82.4 ± 99.5 ml in women and 49.7 ± 54.5 ml in men. Women manifested significantly higher BAT activity, by 9.4 ± 8.1 % (p = 0.03), than men. BAT volume correlated positively with total and spine BMD (r 2 = 0.40 and 0.49, respectively, p < 0.02) in women and remained a significant predictor after adjustment for age, fat, and lean body mass (p < 0.05). Total and spine BMD were higher in women who harbored visually detectable BAT on PET images than those without by 11 ± 2 % (p = 0.02) and 22 ± 2 % (p < 0.01), respectively. No associations were observed between BAT parameters and BMD in men.

Conclusions

This study demonstrated higher BMD among healthy women with more abundant BAT, independent of age and other body compositional parameters. This was not observed in men. The data suggest that brown adipogenesis may be physiologically related to modulation of bone density.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452PubMedCrossRef Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452PubMedCrossRef
2.
go back to reference Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209PubMedCrossRef Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209PubMedCrossRef
3.
go back to reference Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531PubMedCrossRef Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531PubMedCrossRef
4.
go back to reference van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRef van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRef
5.
go back to reference Lee P, Zhao JT, Swarbrick MM, Gracie G, Bova R, Greenfield JR, Freund J, Ho KK (2011) High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab 96:2450–2455PubMedCrossRef Lee P, Zhao JT, Swarbrick MM, Gracie G, Bova R, Greenfield JR, Freund J, Ho KK (2011) High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab 96:2450–2455PubMedCrossRef
6.
go back to reference Lee P, Greenfield JR, Ho KK, Fulham MJ (2010) A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 299:E601–E606PubMedCrossRef Lee P, Greenfield JR, Ho KK, Fulham MJ (2010) A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 299:E601–E606PubMedCrossRef
7.
go back to reference Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA (1995) Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res 10:1762–1768PubMedCrossRef Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA (1995) Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res 10:1762–1768PubMedCrossRef
8.
go back to reference Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL (1996) Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord 20:1027–1032PubMed Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL (1996) Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord 20:1027–1032PubMed
9.
go back to reference Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782PubMedCrossRef Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782PubMedCrossRef
10.
go back to reference Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92:143–147PubMedCrossRef Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92:143–147PubMedCrossRef
11.
go back to reference Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD (2009) Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab 94:3387–3393PubMedCrossRef Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD (2009) Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab 94:3387–3393PubMedCrossRef
12.
go back to reference Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M (2010) Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95:1247–1255PubMedCrossRef Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M (2010) Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95:1247–1255PubMedCrossRef
13.
go back to reference Motyl KJ, Raetz M, Tekalur SA, Schwartz RC, McCabe LR (2011) CCAAT/enhancer binding protein beta-deficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption. Am J Physiol Regul Integr Comp Physiol 300:R1250–R1260PubMedCrossRef Motyl KJ, Raetz M, Tekalur SA, Schwartz RC, McCabe LR (2011) CCAAT/enhancer binding protein beta-deficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption. Am J Physiol Regul Integr Comp Physiol 300:R1250–R1260PubMedCrossRef
14.
go back to reference Carmona MC, Hondares E, Rodriguez de la Concepcion ML, Rodriguez-Sureda V, Peinado-Onsurbe J, Poli V, Iglesias R, Villarroya F, Giralt M (2005) Defective thermoregulation, impaired lipid metabolism, but preserved adrenergic induction of gene expression in brown fat of mice lacking C/EBPbeta. Biochem J 389:47–56PubMedCrossRef Carmona MC, Hondares E, Rodriguez de la Concepcion ML, Rodriguez-Sureda V, Peinado-Onsurbe J, Poli V, Iglesias R, Villarroya F, Giralt M (2005) Defective thermoregulation, impaired lipid metabolism, but preserved adrenergic induction of gene expression in brown fat of mice lacking C/EBPbeta. Biochem J 389:47–56PubMedCrossRef
15.
go back to reference Zanotti S, Stadmeyer L, Smerdel-Ramoya A, Durant D, Canalis E (2009) Misexpression of CCAAT/enhancer binding protein beta causes osteopenia. J Endocrinol 201:263–274PubMedCrossRef Zanotti S, Stadmeyer L, Smerdel-Ramoya A, Durant D, Canalis E (2009) Misexpression of CCAAT/enhancer binding protein beta causes osteopenia. J Endocrinol 201:263–274PubMedCrossRef
16.
go back to reference Motyl KJ, Rosen CJ (2011) Temperatures rising: brown fat and bone. Discov Med 11:179–185PubMed Motyl KJ, Rosen CJ (2011) Temperatures rising: brown fat and bone. Discov Med 11:179–185PubMed
17.
go back to reference Bredella MA, Fazeli PK, Freedman LM, Calder G, Lee H, Rosen CJ, Klibanski A (2012) Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab 97:E584–E590PubMedCrossRef Bredella MA, Fazeli PK, Freedman LM, Calder G, Lee H, Rosen CJ, Klibanski A (2012) Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab 97:E584–E590PubMedCrossRef
18.
go back to reference Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50:546–552PubMedCrossRef Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50:546–552PubMedCrossRef
19.
go back to reference Olmsted-Davis E, Gannon FH, Ozen M et al (2007) Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol 170:620–632PubMedCrossRef Olmsted-Davis E, Gannon FH, Ozen M et al (2007) Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol 170:620–632PubMedCrossRef
20.
go back to reference Zhang H, Schulz TJ, Espinoza DO, Huang TL, Emanuelli B, Kristiansen K, Tseng YH (2010) Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis. Mol Cell Biol 30:4224–4233PubMedCrossRef Zhang H, Schulz TJ, Espinoza DO, Huang TL, Emanuelli B, Kristiansen K, Tseng YH (2010) Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis. Mol Cell Biol 30:4224–4233PubMedCrossRef
Metadata
Title
Cold-activated brown adipose tissue is an independent predictor of higher bone mineral density in women
Authors
P. Lee
R. J. Brychta
M. T. Collins
J. Linderman
S. Smith
P. Herscovitch
C. Millo
K. Y. Chen
F. S. Celi
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 4/2013
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-012-2110-y

Other articles of this Issue 4/2013

Osteoporosis International 4/2013 Go to the issue