Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 1/2024

28-07-2022 | Colchicine | Original Article

Colchicine Inhibits NETs and Alleviates Cardiac Remodeling after Acute Myocardial Infarction

Authors: Yue-wei Li, Si-xu Chen, Ying Yang, Zeng-hui Zhang, Wei-bin Zhou, Yu-na Huang, Zhao-qi Huang, Jia-qi He, Ting-feng Chen, Jing-feng Wang, Zhao-yu Liu, Yang-xin Chen

Published in: Cardiovascular Drugs and Therapy | Issue 1/2024

Login to get access

Abstract

Purpose

Colchicine, a multipotent anti-inflammatory drug, has been reported to alleviate cardiac remodeling and improve cardiac function after acute myocardial infarction (AMI). However, the underlying mechanism remains incompletely understood. Because neutrophils extracellular traps (NETs) enhance inflammation and participate in myocardial ischemia injury, and colchicine can inhibit NETosis, we thus aimed to determine whether colchicine exerts cardioprotective effects on AMI via suppressing NETs.

Methods

Adult C57BL/6 mice were subjected to permanent ligation of the left anterior descending coronary artery and treated with colchicine (0.1 mg/kg/day) or Cl-amidine (10 mg/kg/day) for 7 or 28 days after AMI. Cardiac function was evaluated by echocardiography, and NETs detected by immunofluorescence. ROS production was detected using 2′,7′-dichlorodihydrofluorescein diacetates (DCFH-DA) fluorometry. Intracellular Ca2+ concentration was assessed by a fluorometric ratio technique.

Results

We found that colchicine treatment significantly increased mice survival (89.8% in the colchicine group versus 67.9% in control, n = 32 per group; log-rank test, p < 0.05) and improved cardiac function at day 7 (left ventricular ejection fraction (LVEF): 28.0 ± 9.2% versus 12.6 ± 3.9%, n = 8 per group; p < 0.001) and at day 28 (LVEF: 26.2 ± 7.2% versus 14.8 ± 6.7%, n = 8 per group; p < 0.001) post-AMI. In addition, the administration of colchicine inhibited NETs formation and inflammation. Furthermore, colchicine inhibited NETs formation by reducing NOX2/ROS production and Ca2+ influx. Moreover, prevention of NETs formation with Cl-amidine significantly alleviated AMI-induced cardiac remodeling.

Conclusions

Colchicine inhibited NETs and cardiac inflammation, and alleviated cardiac remodeling after acute myocardial infarction.
Literature
1.
go back to reference Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res. 2020;116:1101–12.PubMedCrossRef Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res. 2020;116:1101–12.PubMedCrossRef
3.
go back to reference Velagaleti RS, Pencina MJ, Murabito JM, et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation. 2008;118:2057–62.PubMedPubMedCentralCrossRef Velagaleti RS, Pencina MJ, Murabito JM, et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation. 2008;118:2057–62.PubMedPubMedCentralCrossRef
4.
go back to reference Khanna D, Khanna PP, Fitzgerald JD, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 2: therapy and antiinflammatory prophylaxis of acute gouty arthritis. Arthritis Care Res (Hoboken). 2012;64:1447–61.PubMedCrossRef Khanna D, Khanna PP, Fitzgerald JD, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 2: therapy and antiinflammatory prophylaxis of acute gouty arthritis. Arthritis Care Res (Hoboken). 2012;64:1447–61.PubMedCrossRef
5.
go back to reference Ozen S, Demirkaya E, Erer B, et al. EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis. 2016;75:644–51.PubMedCrossRef Ozen S, Demirkaya E, Erer B, et al. EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis. 2016;75:644–51.PubMedCrossRef
6.
go back to reference Adler Y, Charron P, Imazio M, et al. 2015 ESC guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36:2921–64.PubMedCrossRef Adler Y, Charron P, Imazio M, et al. 2015 ESC guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36:2921–64.PubMedCrossRef
7.
go back to reference Leccese P, Ozguler Y, Christensen R, et al. Management of skin, mucosa and joint involvement of Behçet’s syndrome: a systematic review for update of the EULAR recommendations for the management of Behçet’s syndrome. Semin Arthritis Rheum. 2019;48:752–62.PubMedCrossRef Leccese P, Ozguler Y, Christensen R, et al. Management of skin, mucosa and joint involvement of Behçet’s syndrome: a systematic review for update of the EULAR recommendations for the management of Behçet’s syndrome. Semin Arthritis Rheum. 2019;48:752–62.PubMedCrossRef
8.
go back to reference Bouabdallaoui N, Tardif JC, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the colchicine cardiovascular outcomes trial (COLCOT). Eur Heart J. 2020;41:4092–9.PubMedPubMedCentralCrossRef Bouabdallaoui N, Tardif JC, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the colchicine cardiovascular outcomes trial (COLCOT). Eur Heart J. 2020;41:4092–9.PubMedPubMedCentralCrossRef
9.
go back to reference Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381:2497–505.PubMedCrossRef Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381:2497–505.PubMedCrossRef
10.
go back to reference Akodad M, Fauconnier J, Sicard P, et al. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int J Cardiol. 2017;240:347–53.PubMedCrossRef Akodad M, Fauconnier J, Sicard P, et al. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int J Cardiol. 2017;240:347–53.PubMedCrossRef
11.
go back to reference Fujisue K, Sugamura K, Kurokawa H, et al. Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction. Circ J. 2017;81:1174–82.PubMedCrossRef Fujisue K, Sugamura K, Kurokawa H, et al. Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction. Circ J. 2017;81:1174–82.PubMedCrossRef
12.
go back to reference Bakhta O, Blanchard S, Guihot AL, et al. Cardioprotective role of colchicine against inflammatory injury in a rat model of acute myocardial infarction. J Cardiovasc Pharmacol Ther. 2018;23:446–55.PubMedCrossRef Bakhta O, Blanchard S, Guihot AL, et al. Cardioprotective role of colchicine against inflammatory injury in a rat model of acute myocardial infarction. J Cardiovasc Pharmacol Ther. 2018;23:446–55.PubMedCrossRef
13.
go back to reference Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119:91–112.PubMedPubMedCentralCrossRef Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119:91–112.PubMedPubMedCentralCrossRef
14.
go back to reference Liew PX, Kubes P. The Neutrophil’s role during health and disease. Physiol Rev. 2019;99:1223–48.PubMedCrossRef Liew PX, Kubes P. The Neutrophil’s role during health and disease. Physiol Rev. 2019;99:1223–48.PubMedCrossRef
15.
go back to reference Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.PubMedPubMedCentralCrossRef Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.PubMedPubMedCentralCrossRef
17.
go back to reference Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–47.PubMedCrossRef Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–47.PubMedCrossRef
18.
go back to reference Fousert E, Toes R, Desai J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses. Cells. 2020;9(4):915. Fousert E, Toes R, Desai J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses. Cells. 2020;9(4):915.
19.
go back to reference Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.ADSPubMedCrossRef Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.ADSPubMedCrossRef
20.
go back to reference Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279–87.PubMedCrossRef Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279–87.PubMedCrossRef
21.
go back to reference Bonaventura A, Vecchié A, Abbate A, Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9(1):231. Bonaventura A, Vecchié A, Abbate A, Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9(1):231.
22.
go back to reference Hofbauer TM, Mangold A, Scherz T, et al. Neutrophil extracellular traps and fibrocytes in ST-segment elevation myocardial infarction. Basic Res Cardiol. 2019;114:33.PubMedPubMedCentralCrossRef Hofbauer TM, Mangold A, Scherz T, et al. Neutrophil extracellular traps and fibrocytes in ST-segment elevation myocardial infarction. Basic Res Cardiol. 2019;114:33.PubMedPubMedCentralCrossRef
23.
go back to reference Mangold A, Alias S, Scherz T, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116:1182–92.PubMedCrossRef Mangold A, Alias S, Scherz T, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116:1182–92.PubMedCrossRef
24.
go back to reference Liu J, Yang D, Wang X, et al. Neutrophil extracellular traps and dsDNA predict outcomes among patients with ST-elevation myocardial infarction. Sci Rep. 2019;9:11599.ADSPubMedPubMedCentralCrossRef Liu J, Yang D, Wang X, et al. Neutrophil extracellular traps and dsDNA predict outcomes among patients with ST-elevation myocardial infarction. Sci Rep. 2019;9:11599.ADSPubMedPubMedCentralCrossRef
25.
go back to reference Savchenko AS, Borissoff JI, Martinod K, et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014;123:141–8.PubMedPubMedCentralCrossRef Savchenko AS, Borissoff JI, Martinod K, et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014;123:141–8.PubMedPubMedCentralCrossRef
26.
go back to reference Du M, Yang W, Schmull S, Gu J, Xue S. Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction. Int Immunopharmacol. 2020;78:106055.PubMedCrossRef Du M, Yang W, Schmull S, Gu J, Xue S. Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction. Int Immunopharmacol. 2020;78:106055.PubMedCrossRef
27.
go back to reference Vaidya K, Tucker B, Kurup R, et al. Colchicine inhibits neutrophil extracellular trap formation in patients with acute coronary syndrome after percutaneous coronary intervention. J Am Heart Assoc. 2021;10:e018993.PubMedCrossRef Vaidya K, Tucker B, Kurup R, et al. Colchicine inhibits neutrophil extracellular trap formation in patients with acute coronary syndrome after percutaneous coronary intervention. J Am Heart Assoc. 2021;10:e018993.PubMedCrossRef
28.
go back to reference Bettiol A, Becatti M, Silvestri E, et al. Neutrophil-mediated mechanisms of damage and in vitro protective effect of colchicine in non-vascular Behçet’s syndrome. Clin Exp Immunol. 2021;206:410–421. Bettiol A, Becatti M, Silvestri E, et al. Neutrophil-mediated mechanisms of damage and in vitro protective effect of colchicine in non-vascular Behçet’s syndrome. Clin Exp Immunol. 2021;206:410–421.
29.
go back to reference Su SA, Yang D, Wu Y, et al. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res. 2017;121:617–27.PubMedCrossRef Su SA, Yang D, Wu Y, et al. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res. 2017;121:617–27.PubMedCrossRef
30.
go back to reference Wang Y, Sano S, Oshima K, et al. Wnt5a-mediated neutrophil recruitment has an obligatory role in pressure overload-induced cardiac dysfunction. Circulation. 2019;140:487–99.PubMedPubMedCentralCrossRef Wang Y, Sano S, Oshima K, et al. Wnt5a-mediated neutrophil recruitment has an obligatory role in pressure overload-induced cardiac dysfunction. Circulation. 2019;140:487–99.PubMedPubMedCentralCrossRef
31.
go back to reference Heinen A, Nederlof R, Panjwani P, et al. IGF1 treatment improves cardiac remodeling after infarction by targeting myeloid cells. Mol Ther. 2019;27:46–58.PubMedCrossRef Heinen A, Nederlof R, Panjwani P, et al. IGF1 treatment improves cardiac remodeling after infarction by targeting myeloid cells. Mol Ther. 2019;27:46–58.PubMedCrossRef
32.
go back to reference Tong DC, Quinn S, Nasis A, et al. Colchicine in patients with acute coronary syndrome: the Australian COPS randomized clinical trial. Circulation. 2020;142:1890–900.PubMedCrossRef Tong DC, Quinn S, Nasis A, et al. Colchicine in patients with acute coronary syndrome: the Australian COPS randomized clinical trial. Circulation. 2020;142:1890–900.PubMedCrossRef
33.
go back to reference Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20.ADSPubMedPubMedCentralCrossRef Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20.ADSPubMedPubMedCentralCrossRef
35.
go back to reference Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112:2817–22.ADSPubMedPubMedCentralCrossRef Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112:2817–22.ADSPubMedPubMedCentralCrossRef
36.
go back to reference Knight JS, Luo W, O’Dell AA, et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res. 2014;114:947–56.PubMedPubMedCentralCrossRef Knight JS, Luo W, O’Dell AA, et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res. 2014;114:947–56.PubMedPubMedCentralCrossRef
37.
go back to reference Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133:2178–85.PubMedCrossRef Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133:2178–85.PubMedCrossRef
38.
go back to reference Huang H, Tohme S, Al-Khafaji AB, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015;62:600–14.PubMedCrossRef Huang H, Tohme S, Al-Khafaji AB, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015;62:600–14.PubMedCrossRef
39.
go back to reference Pieterse E, Rother N, Yanginlar C, et al. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann Rheum Dis. 2018;77:1790–8.PubMedCrossRef Pieterse E, Rother N, Yanginlar C, et al. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann Rheum Dis. 2018;77:1790–8.PubMedCrossRef
40.
go back to reference Yang M, Lv H, Liu Q, et al. Colchicine alleviates cholesterol crystal-induced endothelial cell Pyroptosis through activating AMPK/SIRT1 pathway. Oxidative Med Cell Longev. 2020;2020:9173530.CrossRef Yang M, Lv H, Liu Q, et al. Colchicine alleviates cholesterol crystal-induced endothelial cell Pyroptosis through activating AMPK/SIRT1 pathway. Oxidative Med Cell Longev. 2020;2020:9173530.CrossRef
41.
go back to reference Himelman E, Lillo MA, Nouet J, et al. Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy. J Clin Invest. 2020;130:1713–27.PubMedPubMedCentralCrossRef Himelman E, Lillo MA, Nouet J, et al. Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy. J Clin Invest. 2020;130:1713–27.PubMedPubMedCentralCrossRef
42.
go back to reference Muñoz-Caro T, Lendner M, Daugschies A, Hermosilla C, Taubert A. NADPH oxidase, MPO, NE, ERK1/2, p38 MAPK and Ca2+ influx are essential for Cryptosporidium parvum-induced NET formation. Dev Comp Immunol. 2015;52:245–54.PubMedCrossRef Muñoz-Caro T, Lendner M, Daugschies A, Hermosilla C, Taubert A. NADPH oxidase, MPO, NE, ERK1/2, p38 MAPK and Ca2+ influx are essential for Cryptosporidium parvum-induced NET formation. Dev Comp Immunol. 2015;52:245–54.PubMedCrossRef
43.
44.
go back to reference Magupalli VG, Negro R, Tian Y, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 2020;369(6510):eaas8995. Magupalli VG, Negro R, Tian Y, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 2020;369(6510):eaas8995.
45.
go back to reference Panda D, Daijo JE, Jordan MA, Wilson L. Kinetic stabilization of microtubule dynamics at steady state in vitro by substoichiometric concentrations of tubulin-colchicine complex. Biochemistry. 1995;34:9921–9.PubMedCrossRef Panda D, Daijo JE, Jordan MA, Wilson L. Kinetic stabilization of microtubule dynamics at steady state in vitro by substoichiometric concentrations of tubulin-colchicine complex. Biochemistry. 1995;34:9921–9.PubMedCrossRef
46.
go back to reference Weng JH, Koch PD, Luan HH, et al. Colchicine acts selectively in the liver to induce hepatokines that inhibit myeloid cell activation. Nat Metab. 2021;3:513–22.PubMedPubMedCentralCrossRef Weng JH, Koch PD, Luan HH, et al. Colchicine acts selectively in the liver to induce hepatokines that inhibit myeloid cell activation. Nat Metab. 2021;3:513–22.PubMedPubMedCentralCrossRef
47.
48.
go back to reference Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65:1454–71.PubMedCrossRef Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65:1454–71.PubMedCrossRef
49.
go back to reference Heusch G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet. 2013;381:166–75.PubMedCrossRef Heusch G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet. 2013;381:166–75.PubMedCrossRef
50.
go back to reference Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116:674–99.ADSPubMedCrossRef Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116:674–99.ADSPubMedCrossRef
Metadata
Title
Colchicine Inhibits NETs and Alleviates Cardiac Remodeling after Acute Myocardial Infarction
Authors
Yue-wei Li
Si-xu Chen
Ying Yang
Zeng-hui Zhang
Wei-bin Zhou
Yu-na Huang
Zhao-qi Huang
Jia-qi He
Ting-feng Chen
Jing-feng Wang
Zhao-yu Liu
Yang-xin Chen
Publication date
28-07-2022
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 1/2024
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-022-07326-y

Other articles of this Issue 1/2024

Cardiovascular Drugs and Therapy 1/2024 Go to the issue