Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Cognitive improvement of compound danshen in an Aβ25-35 peptide-induced rat model of Alzheimer’s disease

Authors: Min Liu, Haibiao Guo, Chuyuan Li, Deqin Wang, Jingang Wu, Canmao Wang, Jiangping Xu, Ren-an Qin

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Senile dementia mainly includes Alzheimer' s disease (AD) and vascular dementia (VD). AD is a progressive and irreversible neurodegenerative disorder that is accompanied with a great deal of social burden. The aim of this study was to investigate the effect of Compound Danshen (CDS) on learning and memory of alzheimer’s disease (AD) rat model, as well as to explore the possible connection between CDS and the associated molecules of amyloid beta (Aβ).

Methods

Rats were injected with Aβ25–35 peptide intracerebroventricularly and CDS were subsequently administered once daily for 23 days. Rats’ behavior was monitored using Morris water maze and passive avoidance. Real time PCR and Western blotting were used in determining amyloid precursor protein (APP), β-site APP cleaved enzyme-1(BACE1), Presenilin-1 (PS1), Insulin-degrading enzyme (IDE) and neprilysin (NEP) in hippocampus.

Results

The AD model group presented with spatial learning and memory impairments. CDS and donepezil administration significantly ameliorated the Aβ25–35 peptide-induced memory impairment in both Morris water maze (P < 0.05) and passive avoidance task (P < 0.01) compared to the AD model group. Real time PCR results suggested that CDS significantly decreased APP mRNA, PS1 mRNA and increased IDE and NEP mRNA levels. Western blotting analyses showed that CDS decreased the protein expression of APP and PS1 and increased IDE expression.

Conclusion

CDS improved spatial learning and memory by down-regulating APP, PS1 levels and up-regulating IDE. In future, CDS may have significant therapeutic potential in the treatment of AD patients.
Literature
1.
go back to reference Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.CrossRefPubMed Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.CrossRefPubMed
2.
go back to reference Osborn GG, Saunders AV, et al. Current treatments for patients with Alzheimer disease. J Am Osteopath Assoc. 2010;110:16–26. Osborn GG, Saunders AV, et al. Current treatments for patients with Alzheimer disease. J Am Osteopath Assoc. 2010;110:16–26.
3.
go back to reference Fan LY, Chiu MJ, et al. Pharmacological treatment for Alzheimer’s disease: current approaches and future strategies. Acta Neurol Taiwan. 2010;19:228–45.PubMed Fan LY, Chiu MJ, et al. Pharmacological treatment for Alzheimer’s disease: current approaches and future strategies. Acta Neurol Taiwan. 2010;19:228–45.PubMed
4.
go back to reference Pardossi-Piquard R, Petit A, Kawarai T, Sunyach C, Alves da Costa C, Vincent B, et al. Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron. 2005;46:541–54.CrossRefPubMed Pardossi-Piquard R, Petit A, Kawarai T, Sunyach C, Alves da Costa C, Vincent B, et al. Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron. 2005;46:541–54.CrossRefPubMed
5.
go back to reference Miners JS, van Helmond Z, Kehoe PG, Love S, et al. Changes with age in the activities of beta-secretase and the Abeta-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme. Brain Pathol. 2010;20:794–802.CrossRefPubMed Miners JS, van Helmond Z, Kehoe PG, Love S, et al. Changes with age in the activities of beta-secretase and the Abeta-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme. Brain Pathol. 2010;20:794–802.CrossRefPubMed
6.
go back to reference Gallagher JJ, Minogue AM, Lynch MA, et al. Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increased Abeta accumulation and microglial activation. Neurodegener Dis. 2013;11:33–41.CrossRefPubMed Gallagher JJ, Minogue AM, Lynch MA, et al. Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increased Abeta accumulation and microglial activation. Neurodegener Dis. 2013;11:33–41.CrossRefPubMed
7.
go back to reference Liu Y, Guan H, Beckett TL, Juliano MA, Juliano L, Song ES, et al. In vitro and in vivo degradation of Abeta peptide by peptidases coupled to erythrocytes. Peptides. 2007;28:2348–55.PubMedCentralCrossRefPubMed Liu Y, Guan H, Beckett TL, Juliano MA, Juliano L, Song ES, et al. In vitro and in vivo degradation of Abeta peptide by peptidases coupled to erythrocytes. Peptides. 2007;28:2348–55.PubMedCentralCrossRefPubMed
8.
go back to reference Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100:4162–7.PubMedCentralCrossRefPubMed Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100:4162–7.PubMedCentralCrossRefPubMed
9.
go back to reference Turner AJ, Nalivaeva NN. New insights into the roles of metalloproteinases in neurodegeneration and neuroprotection. Int Rev Neurobiol. 2007;82:113–35.CrossRefPubMed Turner AJ, Nalivaeva NN. New insights into the roles of metalloproteinases in neurodegeneration and neuroprotection. Int Rev Neurobiol. 2007;82:113–35.CrossRefPubMed
10.
go back to reference Qin RA, Lin J, Li CY, Fu WJ, Huang CY, Yu XM, et al. Study of the protective mechanisms of Compound Danshen Tablet (Fufang Danshen Pian) against myocardial ischemia/reperfusion injury via the Akt-eNOS signaling pathway in rats. J Ethnopharmacol. 2014;156:190–8.CrossRef Qin RA, Lin J, Li CY, Fu WJ, Huang CY, Yu XM, et al. Study of the protective mechanisms of Compound Danshen Tablet (Fufang Danshen Pian) against myocardial ischemia/reperfusion injury via the Akt-eNOS signaling pathway in rats. J Ethnopharmacol. 2014;156:190–8.CrossRef
11.
go back to reference Luo J, Xu H, Chen K. Systematic review of compound danshen dropping pill: a chinese patent medicine for acute myocardial infarction. Evid Based Complement Alternat Med. 2013;2013:808076.PubMedCentralPubMed Luo J, Xu H, Chen K. Systematic review of compound danshen dropping pill: a chinese patent medicine for acute myocardial infarction. Evid Based Complement Alternat Med. 2013;2013:808076.PubMedCentralPubMed
12.
go back to reference Qin RA, Luo JB, Chen M, Huang ZY, Wang H, Yang DS, et al. Effects of Compound Danshen Tablets on contents of amino acid neurotransmitters in the brain of the rat with Alzheimer’s disease. Chinese Medical Herbs. 2004;35:905–7. Qin RA, Luo JB, Chen M, Huang ZY, Wang H, Yang DS, et al. Effects of Compound Danshen Tablets on contents of amino acid neurotransmitters in the brain of the rat with Alzheimer’s disease. Chinese Medical Herbs. 2004;35:905–7.
13.
go back to reference Qin RA, Luo JB, Huang ZY, Luo PX, Xiao XL. Effects of Compound Danshen Tablets on learning and memory disturbance and b-AP content of the brain tissue in the rat with Alzheimer’s disease. Chin J Tradit Chin Med Pharm. 2005;20:377–8. Qin RA, Luo JB, Huang ZY, Luo PX, Xiao XL. Effects of Compound Danshen Tablets on learning and memory disturbance and b-AP content of the brain tissue in the rat with Alzheimer’s disease. Chin J Tradit Chin Med Pharm. 2005;20:377–8.
14.
go back to reference Qin RA, Yao XX, Huang ZY. Effects of compound danshen tablets on spatial cognition and expression of brain beta-amyloid precursor protein in a rat model of Alzheimer’s disease. J Tradit Chin Med. 2012;32:63–6.CrossRefPubMed Qin RA, Yao XX, Huang ZY. Effects of compound danshen tablets on spatial cognition and expression of brain beta-amyloid precursor protein in a rat model of Alzheimer’s disease. J Tradit Chin Med. 2012;32:63–6.CrossRefPubMed
15.
go back to reference Qin RA, Zhou DS, Wang JJ, Hu H, Yang Y, Yao XX, et al. Compound Danshen tablets downregulate amyloid protein precursor mRNA expression in a transgenic cell model of Alzheimer’s disease. Neural Regeneration Res. 2012;7:659–63. Qin RA, Zhou DS, Wang JJ, Hu H, Yang Y, Yao XX, et al. Compound Danshen tablets downregulate amyloid protein precursor mRNA expression in a transgenic cell model of Alzheimer’s disease. Neural Regeneration Res. 2012;7:659–63.
16.
go back to reference Delobette S, Privat A, Maurice T. In vitro aggregation facilities beta amyloid peptide-(25–35) induced amnesia in the rat. Eur J Pharmacol. 1997;319:1–4.CrossRefPubMed Delobette S, Privat A, Maurice T. In vitro aggregation facilities beta amyloid peptide-(25–35) induced amnesia in the rat. Eur J Pharmacol. 1997;319:1–4.CrossRefPubMed
17.
go back to reference Cheng YF, Wang C, Lin HB, Li YF, Huang Y, Xu JP, et al. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Abeta25-35 or Abeta1-40 peptide in rats. Psychopharmacology (Berl). 2010;212:181–91.CrossRef Cheng YF, Wang C, Lin HB, Li YF, Huang Y, Xu JP, et al. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Abeta25-35 or Abeta1-40 peptide in rats. Psychopharmacology (Berl). 2010;212:181–91.CrossRef
18.
go back to reference Lin HB, Yang XM, Li TJ, Cheng YF, Zhang HT, Xu JP, et al. Memory deficits and neurochemical changes induced by C-reactive protein in rats: implication in Alzheimer’s disease. Psychopharmacology (Berl). 2009;204:705–14.CrossRef Lin HB, Yang XM, Li TJ, Cheng YF, Zhang HT, Xu JP, et al. Memory deficits and neurochemical changes induced by C-reactive protein in rats: implication in Alzheimer’s disease. Psychopharmacology (Berl). 2009;204:705–14.CrossRef
19.
go back to reference Wang C, Yang XM, Zhuo YY, Zhou H, Lin HB, Cheng YF, et al. The phosphodiesterase-4 inhibitor rolipram reverses Abeta-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int J Neuropsychopharmacol. 2012;15:749–66.CrossRefPubMed Wang C, Yang XM, Zhuo YY, Zhou H, Lin HB, Cheng YF, et al. The phosphodiesterase-4 inhibitor rolipram reverses Abeta-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int J Neuropsychopharmacol. 2012;15:749–66.CrossRefPubMed
20.
go back to reference Lahmy V, Meunier J, Malmström S, Naert G, Givalois L, Kim SH, et al. Blockade of Tau hyperphosphorylation and Abeta(1)(−)(4)(2) generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and sigma(1) receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacol. 2013;38:1706–23.CrossRef Lahmy V, Meunier J, Malmström S, Naert G, Givalois L, Kim SH, et al. Blockade of Tau hyperphosphorylation and Abeta(1)(−)(4)(2) generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and sigma(1) receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacol. 2013;38:1706–23.CrossRef
21.
go back to reference Schneider LS, Insel PS, Weiner MW. Treatment with cholinesterase inhibitors and memantine of patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch Neurol. 2011;68:58–66.PubMedCentralCrossRefPubMed Schneider LS, Insel PS, Weiner MW. Treatment with cholinesterase inhibitors and memantine of patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch Neurol. 2011;68:58–66.PubMedCentralCrossRefPubMed
22.
go back to reference Sugimoto H. Development of anti-Alzheimer’s disease drug based on beta-amyloid hypothesis. Yakugaku Zasshi. 2010;130:521–6.CrossRefPubMed Sugimoto H. Development of anti-Alzheimer’s disease drug based on beta-amyloid hypothesis. Yakugaku Zasshi. 2010;130:521–6.CrossRefPubMed
23.
go back to reference Selkoe DJ. Alzheimer Disease: mechanistic understanding predicts novel therapies. Ann Intern Med. 2004;140:627–38.CrossRefPubMed Selkoe DJ. Alzheimer Disease: mechanistic understanding predicts novel therapies. Ann Intern Med. 2004;140:627–38.CrossRefPubMed
24.
go back to reference Jamsa A, Belda O, Edlund M, Lindström E. BACE-1 inhibition prevents the gamma-secretase inhibitor evoked Abeta rise in human neuroblastoma SH-SY5Y cells. J Biomed Sci. 2011;18:76.PubMedCentralCrossRefPubMed Jamsa A, Belda O, Edlund M, Lindström E. BACE-1 inhibition prevents the gamma-secretase inhibitor evoked Abeta rise in human neuroblastoma SH-SY5Y cells. J Biomed Sci. 2011;18:76.PubMedCentralCrossRefPubMed
25.
go back to reference Silveyra MX, García-Ayllón MS, Serra-Basante C, Mazzoni V, García-Gutierrez MS, Manzanares J, et al. Changes in acetylcholinesterase expression are associated with altered presenilin-1 levels. Neurobiol Aging. 2012;33:627–37.PubMed Silveyra MX, García-Ayllón MS, Serra-Basante C, Mazzoni V, García-Gutierrez MS, Manzanares J, et al. Changes in acetylcholinesterase expression are associated with altered presenilin-1 levels. Neurobiol Aging. 2012;33:627–37.PubMed
26.
go back to reference Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer’s disease? J Neurochem. 2012;120:167–85.CrossRefPubMed Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer’s disease? J Neurochem. 2012;120:167–85.CrossRefPubMed
27.
go back to reference Miners JS, Barua N, Kehoe PG, Gill S, Love S. Abeta-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol. 2011;70:944–59.CrossRefPubMed Miners JS, Barua N, Kehoe PG, Gill S, Love S. Abeta-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol. 2011;70:944–59.CrossRefPubMed
28.
29.
go back to reference Pintchovski SA, Schenk DB, Basi GS. Evidence that enzyme processivity mediates differential Abeta production by PS1 and PS2. Curr Alzheimer Res. 2013;10:4–10.PubMedCentralPubMed Pintchovski SA, Schenk DB, Basi GS. Evidence that enzyme processivity mediates differential Abeta production by PS1 and PS2. Curr Alzheimer Res. 2013;10:4–10.PubMedCentralPubMed
30.
go back to reference El-Amouri SS, Zhu H, Yu J, Marr R, Verma IM, Kindy MS, et al. Neprilysin: an enzyme candidate to slow the progression of Alzheimer’s disease. Am J Pathol. 2008;172:1342–54.PubMedCentralCrossRefPubMed El-Amouri SS, Zhu H, Yu J, Marr R, Verma IM, Kindy MS, et al. Neprilysin: an enzyme candidate to slow the progression of Alzheimer’s disease. Am J Pathol. 2008;172:1342–54.PubMedCentralCrossRefPubMed
31.
go back to reference Park MH, Lee JK, Choi S, Ahn J, Jin HK, Park JS, et al. Recombinant soluble neprilysin reduces amyloid-beta accumulation and improves memory impairment in Alzheimer’s disease mice. Brain Res. 2013;1529:113–24.CrossRefPubMed Park MH, Lee JK, Choi S, Ahn J, Jin HK, Park JS, et al. Recombinant soluble neprilysin reduces amyloid-beta accumulation and improves memory impairment in Alzheimer’s disease mice. Brain Res. 2013;1529:113–24.CrossRefPubMed
32.
go back to reference Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, et al. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med. 2000;6:143–50.CrossRefPubMed Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, et al. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med. 2000;6:143–50.CrossRefPubMed
33.
go back to reference Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, et al. Metabolic regulation of brain Abeta by neprilysin. Science. 2001;292:1550–2.CrossRefPubMed Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, et al. Metabolic regulation of brain Abeta by neprilysin. Science. 2001;292:1550–2.CrossRefPubMed
34.
go back to reference Vepsalainen S, Helisalmi S, Mannermaa A, Pirttilä T, Soininen H, Hiltunen M, et al. Combined risk effects of IDE and NEP gene variants on Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80:1268–70.CrossRefPubMed Vepsalainen S, Helisalmi S, Mannermaa A, Pirttilä T, Soininen H, Hiltunen M, et al. Combined risk effects of IDE and NEP gene variants on Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80:1268–70.CrossRefPubMed
Metadata
Title
Cognitive improvement of compound danshen in an Aβ25-35 peptide-induced rat model of Alzheimer’s disease
Authors
Min Liu
Haibiao Guo
Chuyuan Li
Deqin Wang
Jingang Wu
Canmao Wang
Jiangping Xu
Ren-an Qin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0906-y

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue