Skip to main content
Top
Published in: European Journal of Nutrition 1/2014

01-02-2014 | Review

Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies

Authors: Xiubo Jiang, Dongfeng Zhang, Wenjie Jiang

Published in: European Journal of Nutrition | Issue 1/2014

Login to get access

Abstract

Purpose

Coffee and caffeine have been linked to type 2 diabetes mellitus (T2DM). A dose–response meta-analysis of prospective studies was conducted to assess the association between coffee and caffeine intake and T2DM incidence.

Methods

Pertinent studies were identified by a search of PubMed and EMBASE. The fixed- or random-effect pooled measure was selected based on between-study heterogeneity. Dose–response relationship was assessed by restricted cubic spline.

Results

Compared with the lowest level, the pooled relative risk (95 % CI) of T2DM was 0.71 (0.67–0.76) for the highest level of coffee intake (26 articles involving 50,595 T2DM cases and 1,096,647 participants), 0.79 (0.69–0.91) for the highest level of decaffeinated coffee intake (10 articles involving 29,165 T2DM cases and 491,485 participants) and 0.70 (0.65–0.75) for the highest level of caffeine intake (6 articles involving 9,302 T2DM cases and 321,960 participants). The association of coffee, decaffeinated coffee and caffeine intake with T2DM incidence was stronger for women than that for men. A stronger association of coffee intake with T2DM incidence was found for non-smokers and subjects with body mass index <25 kg/m2. Dose–response analysis suggested that incidence of T2DM decreased by 12 % [0.88 (0.86–0.90)] for every 2 cups/day increment in coffee intake, 11 % [0.89 (0.82–0.98)] for every 2 cups/day increment in decaffeinated coffee intake and 14 % [0.86 (0.82–0.91)] for every 200 mg/day increment in caffeine intake.

Conclusions

Coffee and caffeine intake might significantly reduce the incidence of T2DM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Danaei G, Finucane MM, Lu Y et al (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 9785:31–40CrossRef Danaei G, Finucane MM, Lu Y et al (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 9785:31–40CrossRef
2.
go back to reference Zhang P, Zhang X, Brown J et al (2010) Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract 3:293–301CrossRef Zhang P, Zhang X, Brown J et al (2010) Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract 3:293–301CrossRef
3.
go back to reference International Coffee Organization, accessed on 1/6/2013 International Coffee Organization, accessed on 1/6/2013
4.
go back to reference Natella F, Scaccini C (2012) Role of coffee in modulation of diabetes risk. Nutr Rev 4:207–217CrossRef Natella F, Scaccini C (2012) Role of coffee in modulation of diabetes risk. Nutr Rev 4:207–217CrossRef
5.
go back to reference van Dieren S, Uiterwaal CS, van der Schouw YT et al (2009) Coffee and tea consumption and risk of type 2 diabetes. Diabetologia 12:2561–2569CrossRef van Dieren S, Uiterwaal CS, van der Schouw YT et al (2009) Coffee and tea consumption and risk of type 2 diabetes. Diabetologia 12:2561–2569CrossRef
6.
go back to reference Boggs DA, Rosenberg L, Ruiz-Narvaez EA, Palmer JR (2010) Coffee, tea, and alcohol intake in relation to risk of type 2 diabetes in African American women. Am J Clin Nutr 4:960–966CrossRef Boggs DA, Rosenberg L, Ruiz-Narvaez EA, Palmer JR (2010) Coffee, tea, and alcohol intake in relation to risk of type 2 diabetes in African American women. Am J Clin Nutr 4:960–966CrossRef
7.
go back to reference Oba S, Nagata C, Nakamura K et al (2010) Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women. Br J Nutr 3:453–459CrossRef Oba S, Nagata C, Nakamura K et al (2010) Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women. Br J Nutr 3:453–459CrossRef
8.
go back to reference Sartorelli DS, Fagherazzi G, Balkau B et al (2010) Differential effects of coffee on the risk of type 2 diabetes according to meal consumption in a French cohort of women: the E3N/EPIC cohort study. Am J Clin Nutr 4:1002–1012CrossRef Sartorelli DS, Fagherazzi G, Balkau B et al (2010) Differential effects of coffee on the risk of type 2 diabetes according to meal consumption in a French cohort of women: the E3N/EPIC cohort study. Am J Clin Nutr 4:1002–1012CrossRef
9.
go back to reference Hjellvik V, Tverdal A, Strom H (2011) Boiled coffee intake and subsequent risk for type 2 diabetes. Epidemiology 3:418–421CrossRef Hjellvik V, Tverdal A, Strom H (2011) Boiled coffee intake and subsequent risk for type 2 diabetes. Epidemiology 3:418–421CrossRef
10.
go back to reference Zhang Y, Lee ET, Cowan LD, Fabsitz RR, Howard BV (2011) Coffee consumption and the incidence of type 2 diabetes in men and women with normal glucose tolerance: the Strong Heart Study. Nutr Metab Cardiovasc Dis 6:418–423CrossRef Zhang Y, Lee ET, Cowan LD, Fabsitz RR, Howard BV (2011) Coffee consumption and the incidence of type 2 diabetes in men and women with normal glucose tolerance: the Strong Heart Study. Nutr Metab Cardiovasc Dis 6:418–423CrossRef
11.
go back to reference Floegel A, Pischon T, Bergmann MM, Teucher B, Kaaks R, Boeing H (2012) Coffee consumption and risk of chronic disease in the European prospective investigation into cancer and nutrition (EPIC)-Germany study. Am J Clin Nutr 4:901–908CrossRef Floegel A, Pischon T, Bergmann MM, Teucher B, Kaaks R, Boeing H (2012) Coffee consumption and risk of chronic disease in the European prospective investigation into cancer and nutrition (EPIC)-Germany study. Am J Clin Nutr 4:901–908CrossRef
12.
go back to reference Bhupathiraju SN, Pan A, Malik VS et al (2013) Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am J Clin Nutr 1:155–166CrossRef Bhupathiraju SN, Pan A, Malik VS et al (2013) Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am J Clin Nutr 1:155–166CrossRef
13.
go back to reference Doo T, Morimoto Y, Steinbrecher A, Kolonel LN, Maskarinec G (2013) Coffee intake and risk of type 2 diabetes: the multiethnic cohort. Public Health Nutr 27:1–9 Doo T, Morimoto Y, Steinbrecher A, Kolonel LN, Maskarinec G (2013) Coffee intake and risk of type 2 diabetes: the multiethnic cohort. Public Health Nutr 27:1–9
14.
go back to reference Larsson SC, Orsini N (2011) Coffee consumption and risk of stroke: a dose–response meta-analysis of prospective studies. Am J Epidemiol 9:993–1001CrossRef Larsson SC, Orsini N (2011) Coffee consumption and risk of stroke: a dose–response meta-analysis of prospective studies. Am J Epidemiol 9:993–1001CrossRef
15.
go back to reference Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 7414:557–560CrossRef Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 7414:557–560CrossRef
16.
go back to reference Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose–response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 1:66–73CrossRef Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose–response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 1:66–73CrossRef
17.
go back to reference Orsini N, Bellocco R, Greenland S (2006) Generalized least squares for trend estimation of summarized dose–response data. Stata Journal 6:40–57 Orsini N, Bellocco R, Greenland S (2006) Generalized least squares for trend estimation of summarized dose–response data. Stata Journal 6:40–57
18.
go back to reference Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 12:1282–1297 Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 12:1282–1297
19.
go back to reference Tuomilehto J, Hu G, Bidel S, Lindstrom J, Jousilahti P (2004) Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA 10:1213–1219CrossRef Tuomilehto J, Hu G, Bidel S, Lindstrom J, Jousilahti P (2004) Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA 10:1213–1219CrossRef
20.
go back to reference Bidel S, Silventoinen K, Hu G, Lee DH, Kaprio J, Tuomilehto J (2008) Coffee consumption, serum gamma-glutamyltransferase and risk of type II diabetes. Eur J Clin Nutr 2:178–185CrossRef Bidel S, Silventoinen K, Hu G, Lee DH, Kaprio J, Tuomilehto J (2008) Coffee consumption, serum gamma-glutamyltransferase and risk of type II diabetes. Eur J Clin Nutr 2:178–185CrossRef
21.
go back to reference de Koning L, Malik VS, Rimm EB, Willett WC, Hu FB (2011) Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am J Clin Nutr 6:1321–1327CrossRef de Koning L, Malik VS, Rimm EB, Willett WC, Hu FB (2011) Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am J Clin Nutr 6:1321–1327CrossRef
22.
go back to reference von Ruesten A, Feller S, Bergmann MM, Boeing H (2013) Diet and risk of chronic diseases: results from the first 8 years of follow-up in the EPIC-Potsdam study. Eur J Clin Nutr 4:412–419CrossRef von Ruesten A, Feller S, Bergmann MM, Boeing H (2013) Diet and risk of chronic diseases: results from the first 8 years of follow-up in the EPIC-Potsdam study. Eur J Clin Nutr 4:412–419CrossRef
23.
go back to reference Hu G, Jousilahti P, Peltonen M, Bidel S, Tuomilehto J (2006) Joint association of coffee consumption and other factors to the risk of type 2 diabetes: a prospective study in Finland. Int J Obes (Lond) 12:1742–1749CrossRef Hu G, Jousilahti P, Peltonen M, Bidel S, Tuomilehto J (2006) Joint association of coffee consumption and other factors to the risk of type 2 diabetes: a prospective study in Finland. Int J Obes (Lond) 12:1742–1749CrossRef
24.
go back to reference Goto A, Song Y, Chen BH, Manson JE, Buring JE, Liu S (2011) Coffee and caffeine consumption in relation to sex hormone-binding globulin and risk of type 2 diabetes in postmenopausal women. Diabetes 1:269–275CrossRef Goto A, Song Y, Chen BH, Manson JE, Buring JE, Liu S (2011) Coffee and caffeine consumption in relation to sex hormone-binding globulin and risk of type 2 diabetes in postmenopausal women. Diabetes 1:269–275CrossRef
25.
go back to reference van Dam RM, Feskens EJ (2002) Coffee consumption and risk of type 2 diabetes mellitus. Lancet 9344:1477–1478 van Dam RM, Feskens EJ (2002) Coffee consumption and risk of type 2 diabetes mellitus. Lancet 9344:1477–1478
26.
go back to reference Reunanen A, Heliovaara M, Aho K (2003) Coffee consumption and risk of type 2 diabetes mellitus. Lancet 9358:702–703 author reply 703CrossRef Reunanen A, Heliovaara M, Aho K (2003) Coffee consumption and risk of type 2 diabetes mellitus. Lancet 9358:702–703 author reply 703CrossRef
27.
go back to reference Saremi A, Tulloch-Reid M, Knowler WC (2003) Coffee consumption and the incidence of type 2 diabetes. Diabetes Care 7:2211–2212CrossRef Saremi A, Tulloch-Reid M, Knowler WC (2003) Coffee consumption and the incidence of type 2 diabetes. Diabetes Care 7:2211–2212CrossRef
28.
go back to reference Carlsson S, Hammar N, Grill V, Kaprio J (2004) Coffee consumption and risk of type 2 diabetes in Finnish twins. Int J Epidemiol 3:616–617CrossRef Carlsson S, Hammar N, Grill V, Kaprio J (2004) Coffee consumption and risk of type 2 diabetes in Finnish twins. Int J Epidemiol 3:616–617CrossRef
29.
go back to reference Rosengren A, Dotevall A, Wilhelmsen L, Thelle D, Johansson S (2004) Coffee and incidence of diabetes in Swedish women: a prospective 18-year follow-up study. J Intern Med 1:89–95CrossRef Rosengren A, Dotevall A, Wilhelmsen L, Thelle D, Johansson S (2004) Coffee and incidence of diabetes in Swedish women: a prospective 18-year follow-up study. J Intern Med 1:89–95CrossRef
30.
go back to reference Salazar-Martinez E, Willett WC, Ascherio A et al (2004) Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med 1:1–8CrossRef Salazar-Martinez E, Willett WC, Ascherio A et al (2004) Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med 1:1–8CrossRef
31.
go back to reference van Dam RM, Dekker JM, Nijpels G, Stehouwer CD, Bouter LM, Heine RJ (2004) Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study. Diabetologia 12:2152–2159CrossRef van Dam RM, Dekker JM, Nijpels G, Stehouwer CD, Bouter LM, Heine RJ (2004) Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study. Diabetologia 12:2152–2159CrossRef
32.
go back to reference Greenberg JA, Axen KV, Schnoll R, Boozer CN (2005) Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 9:1121–1129CrossRef Greenberg JA, Axen KV, Schnoll R, Boozer CN (2005) Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 9:1121–1129CrossRef
33.
go back to reference Iso H, Date C, Wakai K, Fukui M, Tamakoshi A (2006) The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 8:554–562CrossRef Iso H, Date C, Wakai K, Fukui M, Tamakoshi A (2006) The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 8:554–562CrossRef
34.
go back to reference Paynter NP, Yeh HC, Voutilainen S et al (2006) Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study. Am J Epidemiol 11:1075–1084CrossRef Paynter NP, Yeh HC, Voutilainen S et al (2006) Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study. Am J Epidemiol 11:1075–1084CrossRef
35.
go back to reference Pereira MA, Parker ED, Folsom AR (2006) Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med 12:1311–1316CrossRef Pereira MA, Parker ED, Folsom AR (2006) Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med 12:1311–1316CrossRef
36.
go back to reference Smith B, Wingard DL, Smith TC, Kritz-Silverstein D, Barrett-Connor E (2006) Does coffee consumption reduce the risk of type 2 diabetes in individuals with impaired glucose? Diabetes Care 11:2385–2390CrossRef Smith B, Wingard DL, Smith TC, Kritz-Silverstein D, Barrett-Connor E (2006) Does coffee consumption reduce the risk of type 2 diabetes in individuals with impaired glucose? Diabetes Care 11:2385–2390CrossRef
37.
go back to reference van Dam RM, Willett WC, Manson JE, Hu FB (2006) Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged US women. Diabetes Care 2:398–403 van Dam RM, Willett WC, Manson JE, Hu FB (2006) Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged US women. Diabetes Care 2:398–403
38.
go back to reference Hamer M, Witte DR, Mosdol A, Marmot MG, Brunner EJ (2008) Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: the Whitehall II study. Br J Nutr 5:1046–1053CrossRef Hamer M, Witte DR, Mosdol A, Marmot MG, Brunner EJ (2008) Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: the Whitehall II study. Br J Nutr 5:1046–1053CrossRef
39.
go back to reference Odegaard AO, Pereira MA, Koh WP, Arakawa K, Lee HP, Yu MC (2008) Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 4:979–985 Odegaard AO, Pereira MA, Koh WP, Arakawa K, Lee HP, Yu MC (2008) Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 4:979–985
40.
go back to reference Fuhrman BJ, Smit E, Crespo CJ, Garcia-Palmieri MR (2009) Coffee intake and risk of incident diabetes in Puerto Rican men: results from the Puerto Rico Heart Health Program. Public Health Nutr 6:842–848CrossRef Fuhrman BJ, Smit E, Crespo CJ, Garcia-Palmieri MR (2009) Coffee intake and risk of incident diabetes in Puerto Rican men: results from the Puerto Rico Heart Health Program. Public Health Nutr 6:842–848CrossRef
41.
go back to reference Kato M, Noda M, Inoue M, Kadowaki T, Tsugane S (2009) Psychological factors, coffee and risk of diabetes mellitus among middle-aged Japanese: a population-based prospective study in the JPHC study cohort. Endocr J 3:459–468CrossRef Kato M, Noda M, Inoue M, Kadowaki T, Tsugane S (2009) Psychological factors, coffee and risk of diabetes mellitus among middle-aged Japanese: a population-based prospective study in the JPHC study cohort. Endocr J 3:459–468CrossRef
42.
go back to reference Wedick NM, Brennan AM, Sun Q, Hu FB, Mantzoros CS, van Dam RM (2011) Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: a randomized controlled trial. Nutr J 10:93 Wedick NM, Brennan AM, Sun Q, Hu FB, Mantzoros CS, van Dam RM (2011) Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: a randomized controlled trial. Nutr J 10:93
43.
go back to reference Loopstra-Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ (2011) Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia 2:320–328CrossRef Loopstra-Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ (2011) Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia 2:320–328CrossRef
44.
go back to reference Imatoh T, Tanihara S, Miyazaki M, Momose Y, Uryu Y, Une H (2011) Coffee consumption but not green tea consumption is associated with adiponectin levels in Japanese males. Eur J Nutr 4:279–284CrossRef Imatoh T, Tanihara S, Miyazaki M, Momose Y, Uryu Y, Une H (2011) Coffee consumption but not green tea consumption is associated with adiponectin levels in Japanese males. Eur J Nutr 4:279–284CrossRef
45.
go back to reference Kempf K, Herder C, Erlund I et al (2010) Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 4:950–957CrossRef Kempf K, Herder C, Erlund I et al (2010) Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 4:950–957CrossRef
46.
go back to reference Greenberg JA, Owen DR, Geliebter A (2010) Decaffeinated coffee and glucose metabolism in young men. Diabetes Care 2:278–280CrossRef Greenberg JA, Owen DR, Geliebter A (2010) Decaffeinated coffee and glucose metabolism in young men. Diabetes Care 2:278–280CrossRef
47.
go back to reference Wu T, Willett WC, Hankinson SE, Giovannucci E (2005) Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in US women. Diabetes Care 6:1390–1396CrossRef Wu T, Willett WC, Hankinson SE, Giovannucci E (2005) Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in US women. Diabetes Care 6:1390–1396CrossRef
48.
go back to reference van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 6:1023–1025CrossRef van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 6:1023–1025CrossRef
49.
go back to reference Dong JY, Xun P, He K, Qin LQ (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 9:2116–2122CrossRef Dong JY, Xun P, He K, Qin LQ (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 9:2116–2122CrossRef
50.
go back to reference Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 5:759–767 Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 5:759–767
51.
go back to reference Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J (2007) Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 22:2654–2664CrossRef Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J (2007) Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 22:2654–2664CrossRef
52.
go back to reference Zevin S, Benowitz NL (1999) Drug interactions with tobacco smoking. An update. Clin Pharmacokinet 6:425–438CrossRef Zevin S, Benowitz NL (1999) Drug interactions with tobacco smoking. An update. Clin Pharmacokinet 6:425–438CrossRef
53.
go back to reference Vazquez G, Duval S, Jacobs DR, Jr., Silventoinen K (2007) Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 29:115–128 Vazquez G, Duval S, Jacobs DR, Jr., Silventoinen K (2007) Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 29:115–128
54.
go back to reference Huxley R, Lee CM, Barzi F et al (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 22:2053–2063CrossRef Huxley R, Lee CM, Barzi F et al (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 22:2053–2063CrossRef
55.
go back to reference Bohlscheid-Thomas S, Hoting I, Boeing H, Wahrendorf J (1997) Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the German part of the EPIC project. European prospective investigation into cancer and nutrition. Int J Epidemiol 26:S59–70 Bohlscheid-Thomas S, Hoting I, Boeing H, Wahrendorf J (1997) Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the German part of the EPIC project. European prospective investigation into cancer and nutrition. Int J Epidemiol 26:S59–70
56.
go back to reference Feskanich D, Rimm EB, Giovannucci EL et al (1993) Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc 7:790–796CrossRef Feskanich D, Rimm EB, Giovannucci EL et al (1993) Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc 7:790–796CrossRef
Metadata
Title
Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies
Authors
Xiubo Jiang
Dongfeng Zhang
Wenjie Jiang
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nutrition / Issue 1/2014
Print ISSN: 1436-6207
Electronic ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-013-0603-x

Other articles of this Issue 1/2014

European Journal of Nutrition 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine