Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 3/2019

Open Access 01-06-2019 | Cochlear Implant | Research Article

The Estimated Electrode-Neuron Interface in Cochlear Implant Listeners Is Different for Early-Implanted Children and Late-Implanted Adults

Authors: Mishaela DiNino, Gabrielle O’Brien, Steven M. Bierer, Kelly N. Jahn, Julie G. Arenberg

Published in: Journal of the Association for Research in Otolaryngology | Issue 3/2019

Login to get access

Abstract

Cochlear implant (CI) programming is similar for all CI users despite limited understanding of the electrode-neuron interface (ENI). The ENI refers to the ability of each CI electrode to effectively stimulate target auditory neurons and is influenced by electrode position, neural health, cochlear geometry, and bone and tissue growth in the cochlea. Hearing history likely affects these variables, suggesting that the efficacy of each channel of stimulation differs between children who were implanted at young ages and adults who lost hearing and received a CI later in life. This study examined whether ENI quality differed between early-implanted children and late-implanted adults. Auditory detection thresholds and most comfortable levels (MCLs) were obtained with monopolar and focused electrode configurations. Channel-to-channel variability and dynamic range were calculated for both types of stimulation. Electrical field imaging data were also acquired to estimate levels of intracochlear resistance. Children exhibited lower average auditory perception thresholds and MCLs compared with adults, particularly with focused stimulation. However, neither dynamic range nor channel-to-channel threshold variability differed between groups, suggesting that children’s range of perceptible current was shifted downward. Children also demonstrated increased intracochlear resistance levels relative to the adult group, possibly reflecting greater ossification or tissue growth after CI surgery. These results illustrate physical and perceptual differences related to the ENI of early-implanted children compared with late-implanted adults. Evidence from this study demonstrates a need for further investigation of the ENI in CI users with varying hearing histories.
Literature
go back to reference Arenberg JG, Parkinson WS, Litvak L, Chen C, Kreft HA, Oxenham AJ (2018) A dynamically focusing cochlear implant strategy can improve vowel identification in noise. Ear Hear 39:1136–1145CrossRefPubMed Arenberg JG, Parkinson WS, Litvak L, Chen C, Kreft HA, Oxenham AJ (2018) A dynamically focusing cochlear implant strategy can improve vowel identification in noise. Ear Hear 39:1136–1145CrossRefPubMed
go back to reference Azadpour M, Smith RL (2016) Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing. Hear Res 342:48–57CrossRefPubMed Azadpour M, Smith RL (2016) Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing. Hear Res 342:48–57CrossRefPubMed
go back to reference Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRef Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRef
go back to reference Baudhuin J, Cadieux J, Firszt JB, Reeder RM, Maxson JL (2012) Optimization of programming parameters in children with the advanced bionics cochlear implant. J Am Acad Audiol 23:302–312CrossRefPubMedPubMedCentral Baudhuin J, Cadieux J, Firszt JB, Reeder RM, Maxson JL (2012) Optimization of programming parameters in children with the advanced bionics cochlear implant. J Am Acad Audiol 23:302–312CrossRefPubMedPubMedCentral
go back to reference Berenstein CK, Mens LHM, Mulder JJS, Vanpoucke FJ (2008) Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations. Ear Hear 29:250–260CrossRefPubMed Berenstein CK, Mens LHM, Mulder JJS, Vanpoucke FJ (2008) Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations. Ear Hear 29:250–260CrossRefPubMed
go back to reference Bierer JA (2007) Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration. J Acoust Soc Am 121:1642–1653CrossRefPubMed Bierer JA (2007) Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration. J Acoust Soc Am 121:1642–1653CrossRefPubMed
go back to reference Bierer JA, Faulkner KF (2010) Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves. Ear Hear 31:247–258CrossRefPubMedPubMedCentral Bierer JA, Faulkner KF (2010) Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves. Ear Hear 31:247–258CrossRefPubMedPubMedCentral
go back to reference Bierer JA, Litvak L (2016) Reducing channel interaction through cochlear implant programming may improve speech perception: current focusing and channel deactivation. Trends Hear 20:1–12 Bierer JA, Litvak L (2016) Reducing channel interaction through cochlear implant programming may improve speech perception: current focusing and channel deactivation. Trends Hear 20:1–12
go back to reference Bierer JA, Nye AD (2014) Comparisons between detection threshold and loudness perception for individual cochlear implant channels. Ear Hear 35:641–651CrossRefPubMedPubMedCentral Bierer JA, Nye AD (2014) Comparisons between detection threshold and loudness perception for individual cochlear implant channels. Ear Hear 35:641–651CrossRefPubMedPubMedCentral
go back to reference Bierer JA, Bierer SM, Kreft HA, Oxenham AJ (2015a) A fast method for measuring psychophysical thresholds across the cochlear implant array. Trends Hear 19:1–12 Bierer JA, Bierer SM, Kreft HA, Oxenham AJ (2015a) A fast method for measuring psychophysical thresholds across the cochlear implant array. Trends Hear 19:1–12
go back to reference Bierer, SM, Shea-Brown, E, Bierer, JA (2015b) Current spread in the cochlea: insights from CT and electrical field imaging. Poster presented at the conference on implantable auditory prostheses, Tahoe, CA Bierer, SM, Shea-Brown, E, Bierer, JA (2015b) Current spread in the cochlea: insights from CT and electrical field imaging. Poster presented at the conference on implantable auditory prostheses, Tahoe, CA
go back to reference Boons T, Brokx J, Frijns J, Philips B, Vermeulen A, Wouters J, van Wieringen A (2013) Newborn hearing screening and cochlear implantation: impact on spoken language development. B-ENT Suppl 21:91–98 Boons T, Brokx J, Frijns J, Philips B, Vermeulen A, Wouters J, van Wieringen A (2013) Newborn hearing screening and cochlear implantation: impact on spoken language development. B-ENT Suppl 21:91–98
go back to reference Brown CJ, Abbas PJ, Etlert CP, O’Brient S, Oleson JJ (2010) Effects of long-term use of a cochlear implant on the electrically evoked compound action potential. J Am Acad Audiol 21:5–15CrossRefPubMedPubMedCentral Brown CJ, Abbas PJ, Etlert CP, O’Brient S, Oleson JJ (2010) Effects of long-term use of a cochlear implant on the electrically evoked compound action potential. J Am Acad Audiol 21:5–15CrossRefPubMedPubMedCentral
go back to reference Busby PA, Plant KL, Whitford LA (2002) Electrode impedance in adults and children using the nucleus 24 cochlear implant system. Cochlear Implants Int 3:87–103CrossRefPubMed Busby PA, Plant KL, Whitford LA (2002) Electrode impedance in adults and children using the nucleus 24 cochlear implant system. Cochlear Implants Int 3:87–103CrossRefPubMed
go back to reference Chatterjee M, Fu QJ, Shannon RV (2000) Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners. J Acoust Soc Am 107:1637–1644CrossRefPubMed Chatterjee M, Fu QJ, Shannon RV (2000) Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners. J Acoust Soc Am 107:1637–1644CrossRefPubMed
go back to reference Dahm MC, Shepherd RK, Clark GM (1993) The postnatal growth of the temporal bone and its implications for cochlear implantation in children. Acta Otolaryngol Suppl 505:1–39PubMed Dahm MC, Shepherd RK, Clark GM (1993) The postnatal growth of the temporal bone and its implications for cochlear implantation in children. Acta Otolaryngol Suppl 505:1–39PubMed
go back to reference DeVries L, Scheperle R, Bierer JA (2016) Assessing the electrode-neuron interface with the electrically-evoked compound action potential, electrode position, and behavioral thresholds. J Assoc Res Otolaryngol 17:237–252CrossRefPubMedPubMedCentral DeVries L, Scheperle R, Bierer JA (2016) Assessing the electrode-neuron interface with the electrically-evoked compound action potential, electrode position, and behavioral thresholds. J Assoc Res Otolaryngol 17:237–252CrossRefPubMedPubMedCentral
go back to reference Finley CC, Holden TA, Holden LK, Whiting BR, Chole RA, Neely GJ, Hullar TE, Skinner MW (2008) Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol 29:920–928CrossRefPubMedPubMedCentral Finley CC, Holden TA, Holden LK, Whiting BR, Chole RA, Neely GJ, Hullar TE, Skinner MW (2008) Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol 29:920–928CrossRefPubMedPubMedCentral
go back to reference Firszt JB, Chambers RD, Kraus N (2002) Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures. Ear Hear 23:516–531CrossRefPubMed Firszt JB, Chambers RD, Kraus N (2002) Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures. Ear Hear 23:516–531CrossRefPubMed
go back to reference Garadat SN, Zwolan TA, Pfingst BE (2013) Using temporal modulation sensitivity to select stimulation sites for processor MAPs in cochlear implant listeners. Audiol Neurootol 18:247–260CrossRefPubMed Garadat SN, Zwolan TA, Pfingst BE (2013) Using temporal modulation sensitivity to select stimulation sites for processor MAPs in cochlear implant listeners. Audiol Neurootol 18:247–260CrossRefPubMed
go back to reference Gifford RH, Noble JH, Camarata SM, Sunderhaus LW, Dwyer RT, Dawant BM, Dietrich MS, Labadie RF (2018) The relationship between spectral modulation detection and speech recognition: adult versus pediatric cochlear implant recipients. Trends Hear 22:1–14 Gifford RH, Noble JH, Camarata SM, Sunderhaus LW, Dwyer RT, Dawant BM, Dietrich MS, Labadie RF (2018) The relationship between spectral modulation detection and speech recognition: adult versus pediatric cochlear implant recipients. Trends Hear 22:1–14
go back to reference Halpin KS, Smith KY, Widen JE, Chertoff ME (2010) Effects of universal newborn hearing screening on an early intervention program for children with hearing loss, birth to 3 yr of age. J Am Acad Audiol 21:169–175CrossRefPubMed Halpin KS, Smith KY, Widen JE, Chertoff ME (2010) Effects of universal newborn hearing screening on an early intervention program for children with hearing loss, birth to 3 yr of age. J Am Acad Audiol 21:169–175CrossRefPubMed
go back to reference Hanekom T (2005) Modelling encapsulation tissue around cochlear implant electrodes. Med Biol Eng Comput 43:47–55CrossRefPubMed Hanekom T (2005) Modelling encapsulation tissue around cochlear implant electrodes. Med Biol Eng Comput 43:47–55CrossRefPubMed
go back to reference Hughes ML, Vander Werff KR, Brown CJ, Abbas PJ, Kelsay DM, Teagle HF, Lowder MW (2001) A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in nucleus 24 cochlear implant users. Ear Hear 22:471–486CrossRefPubMed Hughes ML, Vander Werff KR, Brown CJ, Abbas PJ, Kelsay DM, Teagle HF, Lowder MW (2001) A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in nucleus 24 cochlear implant users. Ear Hear 22:471–486CrossRefPubMed
go back to reference Koning R, Wouters J (2016) Speech onset enhancement improves intelligibility in adverse listening conditions for cochlear implant users. Hear Res 342:13–22CrossRefPubMed Koning R, Wouters J (2016) Speech onset enhancement improves intelligibility in adverse listening conditions for cochlear implant users. Hear Res 342:13–22CrossRefPubMed
go back to reference Kral A, Hartmann R, Mortazavi D, Klinke R (1998) Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear Res 121:11–28CrossRefPubMed Kral A, Hartmann R, Mortazavi D, Klinke R (1998) Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear Res 121:11–28CrossRefPubMed
go back to reference Lammers MJW, Jansen TTG, Grolman W, Lenarz T, Versnel H, van Zanten GA, Topsakal V, Lesinski-Schiedat A (2015) The influence of newborn hearing screening on the age at cochlear implantation in children. Laryngoscope 125:985–990CrossRefPubMed Lammers MJW, Jansen TTG, Grolman W, Lenarz T, Versnel H, van Zanten GA, Topsakal V, Lesinski-Schiedat A (2015) The influence of newborn hearing screening on the age at cochlear implantation in children. Laryngoscope 125:985–990CrossRefPubMed
go back to reference Leake PA, Hradek GT (1988) Cochlear pathology of long term neomycin induced deafness in cats. Hear Res 33:11–33CrossRefPubMed Leake PA, Hradek GT (1988) Cochlear pathology of long term neomycin induced deafness in cats. Hear Res 33:11–33CrossRefPubMed
go back to reference Leake PA, Hradek GT, Rebscher SJ, Snyder RL (1991) Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear Res 54:251–271CrossRefPubMed Leake PA, Hradek GT, Rebscher SJ, Snyder RL (1991) Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear Res 54:251–271CrossRefPubMed
go back to reference Leone CA, Mosca F, Grassia R (2017) Temporal changes in impedance of implanted adults for various cochlear segments. Acta Otorhinolaryngol Ital 37:312–319PubMedPubMedCentral Leone CA, Mosca F, Grassia R (2017) Temporal changes in impedance of implanted adults for various cochlear segments. Acta Otorhinolaryngol Ital 37:312–319PubMedPubMedCentral
go back to reference Li PMMC, Somdas MA, Eddington DK, Nadol JB (2007) Analysis of intracochlear new bone and fibrous tissue formation in human subjects with cochlear implants. Ann Otol Rhinol Laryngol 116:731–738CrossRefPubMed Li PMMC, Somdas MA, Eddington DK, Nadol JB (2007) Analysis of intracochlear new bone and fibrous tissue formation in human subjects with cochlear implants. Ann Otol Rhinol Laryngol 116:731–738CrossRefPubMed
go back to reference Long CJ, Holden TA, McClelland GH, Parkinson WS, Shelton C, Kelsall DC, Smith ZM (2014) Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J Assoc Res Otolaryngol 15:293–304CrossRefPubMedPubMedCentral Long CJ, Holden TA, McClelland GH, Parkinson WS, Shelton C, Kelsall DC, Smith ZM (2014) Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J Assoc Res Otolaryngol 15:293–304CrossRefPubMedPubMedCentral
go back to reference Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12:711–717CrossRefPubMedPubMedCentral Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12:711–717CrossRefPubMedPubMedCentral
go back to reference Mens LHM (2007) Advances in cochlear implant telemetry: evoked neural responses, electrical field imaging, and technical integrity. Trends Amplif 11:143–159CrossRefPubMedPubMedCentral Mens LHM (2007) Advances in cochlear implant telemetry: evoked neural responses, electrical field imaging, and technical integrity. Trends Amplif 11:143–159CrossRefPubMedPubMedCentral
go back to reference Miura M, Sando I, Hirsch BE, Orita Y (2002) Analysis of spiral ganglion cell populations in children with normal and pathological ears. Ann Otol Rhinol Laryngol 111:1059–1065CrossRefPubMed Miura M, Sando I, Hirsch BE, Orita Y (2002) Analysis of spiral ganglion cell populations in children with normal and pathological ears. Ann Otol Rhinol Laryngol 111:1059–1065CrossRefPubMed
go back to reference Molisz A, Zarowski A, Vermeiren A, Theunen T, De Coninck L, Siebert J, Offeciers EF (2015) Postimplantation changes of electrophysiological parameters in patients with cochlear implants. Audiol Neurootol 20:222–228CrossRefPubMed Molisz A, Zarowski A, Vermeiren A, Theunen T, De Coninck L, Siebert J, Offeciers EF (2015) Postimplantation changes of electrophysiological parameters in patients with cochlear implants. Audiol Neurootol 20:222–228CrossRefPubMed
go back to reference Müller V, Klünter H, Fürstenberg D, Meister H, Walger M, Lang-Roth R (2018) Examination of prosody and timbre perception in adults with cochlear implants comparing different fine structure coding strategies. Am J Audiol 27(2):197-207. Müller V, Klünter H, Fürstenberg D, Meister H, Walger M, Lang-Roth R (2018) Examination of prosody and timbre perception in adults with cochlear implants comparing different fine structure coding strategies. Am J Audiol 27(2):197-207.
go back to reference Noble JH, Gifford RH, Hedley-Williams AJ, Dawant BM, Labadie RF (2014) Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol Neurootol 19:400–411CrossRefPubMedPubMedCentral Noble JH, Gifford RH, Hedley-Williams AJ, Dawant BM, Labadie RF (2014) Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol Neurootol 19:400–411CrossRefPubMedPubMedCentral
go back to reference Noble JH, Hedley-Williams AJ, Sunderhaus L, Dawant BM, Labadie RF, Camarata SM, Gifford RH (2016) Initial results with image-guided cochlear implant programming in children. Otol Neurotol 37:e63–e69CrossRefPubMedPubMedCentral Noble JH, Hedley-Williams AJ, Sunderhaus L, Dawant BM, Labadie RF, Camarata SM, Gifford RH (2016) Initial results with image-guided cochlear implant programming in children. Otol Neurotol 37:e63–e69CrossRefPubMedPubMedCentral
go back to reference Nogueira W, Rode T, Büchner A (2016) Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants. J Acoust Soc Am 139:728–739CrossRefPubMed Nogueira W, Rode T, Büchner A (2016) Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants. J Acoust Soc Am 139:728–739CrossRefPubMed
go back to reference Otte J, Schunknecht HF, Kerr AG (1978) Ganglion cell populations in normal and pathological human cochleae: implications for cochlear implantation. Laryngoscope 88:1231–1246CrossRefPubMed Otte J, Schunknecht HF, Kerr AG (1978) Ganglion cell populations in normal and pathological human cochleae: implications for cochlear implantation. Laryngoscope 88:1231–1246CrossRefPubMed
go back to reference Padilla M, Stupak N, Landsberger DM (2017) Pitch ranking with different virtual channel configurations in electrical hearing. Hear Res 348:54–62CrossRefPubMed Padilla M, Stupak N, Landsberger DM (2017) Pitch ranking with different virtual channel configurations in electrical hearing. Hear Res 348:54–62CrossRefPubMed
go back to reference Pelliccia P, Venail F, Bonafé A, Makeieff M, Iannetti G, Bartolomeo M, Mondain M (2014) Cochlea size variability and implications in clinical practice. Acta Otorhinolaryngol Ital 34:42–49PubMedPubMedCentral Pelliccia P, Venail F, Bonafé A, Makeieff M, Iannetti G, Bartolomeo M, Mondain M (2014) Cochlea size variability and implications in clinical practice. Acta Otorhinolaryngol Ital 34:42–49PubMedPubMedCentral
go back to reference Robinson EJ, Davidson LS, Uchanski RM, Brenner CM, Geers AE (2012) A longitudinal study of speech perception skills and device characteristics of adolescent cochlear implant users. J Am Acad Audiol 23:341–349CrossRefPubMedPubMedCentral Robinson EJ, Davidson LS, Uchanski RM, Brenner CM, Geers AE (2012) A longitudinal study of speech perception skills and device characteristics of adolescent cochlear implant users. J Am Acad Audiol 23:341–349CrossRefPubMedPubMedCentral
go back to reference Sanpetrino NM, Smith RL (2006) The growth of loudness functions measured in cochlear implant listeners using absolute magnitude estimation and compared using Akaike’s information criterion. Conf Proc IEEE Eng Med Biol Soc 1:1642–1644CrossRefPubMed Sanpetrino NM, Smith RL (2006) The growth of loudness functions measured in cochlear implant listeners using absolute magnitude estimation and compared using Akaike’s information criterion. Conf Proc IEEE Eng Med Biol Soc 1:1642–1644CrossRefPubMed
go back to reference Sek A, Alcántara J, Moore BCJ, Kluk K, Wicher A (2005) Development of a fast method for determining psychophysical tuning curves. Int J Audiol 44:408–420CrossRefPubMed Sek A, Alcántara J, Moore BCJ, Kluk K, Wicher A (2005) Development of a fast method for determining psychophysical tuning curves. Int J Audiol 44:408–420CrossRefPubMed
go back to reference Snyder RL, Bierer JA, Middlebrooks JC (2004) Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. J Assoc Res Otolaryngol 5:305–322CrossRefPubMedPubMedCentral Snyder RL, Bierer JA, Middlebrooks JC (2004) Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. J Assoc Res Otolaryngol 5:305–322CrossRefPubMedPubMedCentral
go back to reference Spelman FA, Clopton BM, Pfingst BE (1982) Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis. Ann Otol Rhinol Laryngol Suppl 98:3–8PubMed Spelman FA, Clopton BM, Pfingst BE (1982) Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis. Ann Otol Rhinol Laryngol Suppl 98:3–8PubMed
go back to reference Srinivasan AG, Padilla M, Shannon RV, Landsberger DM (2013) Improving speech perception in noise with current focusing in cochlear implant users. Hear Res 299:29–36CrossRefPubMedPubMedCentral Srinivasan AG, Padilla M, Shannon RV, Landsberger DM (2013) Improving speech perception in noise with current focusing in cochlear implant users. Hear Res 299:29–36CrossRefPubMedPubMedCentral
go back to reference Vanpoucke FJ, Zarowski AJ, Peeters SA (2004) Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements. IEEE Trans Biomed Eng 51:2174–2183CrossRefPubMed Vanpoucke FJ, Zarowski AJ, Peeters SA (2004) Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements. IEEE Trans Biomed Eng 51:2174–2183CrossRefPubMed
go back to reference Wang, N-Y, Eisenberg, LS, Johnson, KC, Fink, NE, Tobey, EA, Quittner, AL, … the CDaCI Investigative Team. (2008). Tracking development of speech recognition: longitudinal data from hierarchical assessments in the childhood development after cochlear implantation study. Otol Neurotol 29: 240–245 Wang, N-Y, Eisenberg, LS, Johnson, KC, Fink, NE, Tobey, EA, Quittner, AL, … the CDaCI Investigative Team. (2008). Tracking development of speech recognition: longitudinal data from hierarchical assessments in the childhood development after cochlear implantation study. Otol Neurotol 29: 240–245
go back to reference Wilk M, Hessler R, Mugridge K, Jolly C, Fehr M, Lenarz T, Scheper V (2016) Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can be reduced using a dexamethasone eluting electrode. PLoS One 11:e0147552CrossRefPubMedPubMedCentral Wilk M, Hessler R, Mugridge K, Jolly C, Fehr M, Lenarz T, Scheper V (2016) Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can be reduced using a dexamethasone eluting electrode. PLoS One 11:e0147552CrossRefPubMedPubMedCentral
Metadata
Title
The Estimated Electrode-Neuron Interface in Cochlear Implant Listeners Is Different for Early-Implanted Children and Late-Implanted Adults
Authors
Mishaela DiNino
Gabrielle O’Brien
Steven M. Bierer
Kelly N. Jahn
Julie G. Arenberg
Publication date
01-06-2019
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 3/2019
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-019-00716-4

Other articles of this Issue 3/2019

Journal of the Association for Research in Otolaryngology 3/2019 Go to the issue