Skip to main content
Top
Published in: Journal of Neurology 10/2012

01-10-2012 | Original Communication

Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2

Authors: Rosanna Cardani, Marzia Giagnacovo, Annalisa Botta, Fabrizio Rinaldi, Alessandra Morgante, Bjarne Udd, Olayinka Raheem, Sini Penttilä, Tiina Suominen, Laura V. Renna, Valeria Sansone, Enrico Bugiardini, Giuseppe Novelli, Giovanni Meola

Published in: Journal of Neurology | Issue 10/2012

Login to get access

Abstract

Myotonic dystrophy type 2 (DM2) is a common adult onset muscular dystrophy caused by a dominantly transmitted (CCTG) n expansion in intron 1 of the CNBP gene. In DM2 there is no obvious evidence for an intergenerational increase of expansion size, and no congenital cases have been confirmed. We describe the clinical and histopathological features, and provide the genetic and molecular explanation for juvenile onset of myotonia in a 14-year-old female with DM2 and her affected mother presenting with a more severe phenotype despite a later onset of symptoms. Histological and immunohistochemical findings correlated with disease severity or age at onset in both patients. Southern blot on both muscle and blood samples revealed only a small increase in the CCTG repeat number through maternal transmission. Fluorescence in situ hybridization, in combination with MBNL1 immunofluorescence on muscle sections, showed the presence of mutant mRNA and MBNL1 in nuclear foci; the fluorescence intensity and its area appeared to be similar in the two patients. Splicing analysis of the INSR, CLCN1 and MBNL1 genes in muscle tissue demonstrates that the level of aberrant splicing isoforms was lower in the daughter than in the mother. However, in the CLCN1 gene, a heterozygous mutation c.501C>G p.F167L was present in the daughter’s DNA and found to be maternally inherited. Biomolecular findings did not explain the unusual young onset in the daughter. The co-segregation of DM2 with a recessive CLCN1 mutation provided the explanation for the unusual clinical findings.
Literature
1.
go back to reference Harper PS (2001) Myotonic dystrophy. In: Karpati G, Hilton-Jones D, Griggs RC (eds) Disorders of voluntary muscle. University Press, Cambridge, pp 541–559 Harper PS (2001) Myotonic dystrophy. In: Karpati G, Hilton-Jones D, Griggs RC (eds) Disorders of voluntary muscle. University Press, Cambridge, pp 541–559
2.
go back to reference Brook JD, McCurrach ME, Harley HG et al (1999) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 69:799–808 Brook JD, McCurrach ME, Harley HG et al (1999) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 69:799–808
3.
go back to reference Fu YH, Pizzuti A, Fenwick RG Jr et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–1258PubMedCrossRef Fu YH, Pizzuti A, Fenwick RG Jr et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–1258PubMedCrossRef
4.
go back to reference Mahadevan M, Tsilfidis C, Sabourin L et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255PubMedCrossRef Mahadevan M, Tsilfidis C, Sabourin L et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255PubMedCrossRef
5.
go back to reference Ranum LPW, Rasmussen P, Benzow K et al (1999) Genetic mapping of a second myotonic dystrophy locus. Nat Genet 19:196–198CrossRef Ranum LPW, Rasmussen P, Benzow K et al (1999) Genetic mapping of a second myotonic dystrophy locus. Nat Genet 19:196–198CrossRef
6.
go back to reference Liquori CL, Ricker K, Moseley ML et al (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:816–817CrossRef Liquori CL, Ricker K, Moseley ML et al (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:816–817CrossRef
7.
go back to reference Kuyumcu-Martinez NM, Cooper TA (2006) Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. Prog Mol Subcell Biol 44:133–159PubMedCrossRef Kuyumcu-Martinez NM, Cooper TA (2006) Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. Prog Mol Subcell Biol 44:133–159PubMedCrossRef
9.
go back to reference Meola G, Cardani R (2009) RNA binding proteins in myotonic dystrophies. In: Denman RB (ed) RNA binding proteins in development and disease. Research Signpost, Kerala, pp 153–166 Meola G, Cardani R (2009) RNA binding proteins in myotonic dystrophies. In: Denman RB (ed) RNA binding proteins in development and disease. Research Signpost, Kerala, pp 153–166
10.
go back to reference Meola G, Moxley RT (2004) Myotonic dystrophy type 2 and related myotonic disorders. J Neurol 251:1173–1182PubMedCrossRef Meola G, Moxley RT (2004) Myotonic dystrophy type 2 and related myotonic disorders. J Neurol 251:1173–1182PubMedCrossRef
11.
go back to reference Vihola A, Bassez G, Meola G et al (2003) Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology 60:1854–1857PubMedCrossRef Vihola A, Bassez G, Meola G et al (2003) Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology 60:1854–1857PubMedCrossRef
12.
go back to reference Bassez G, Chapoy E, Bastuji-Garin S et al (2008) Type 2 myotonic dystrophy can be predicted by the combination of type 2 muscle fiber central nucleation and scattered atrophy. J Neuropathol Exp Neurol 67:319–325PubMedCrossRef Bassez G, Chapoy E, Bastuji-Garin S et al (2008) Type 2 myotonic dystrophy can be predicted by the combination of type 2 muscle fiber central nucleation and scattered atrophy. J Neuropathol Exp Neurol 67:319–325PubMedCrossRef
13.
go back to reference Pisani V, Panico MB, Terracciano C et al (2008) Preferential central nucleation of type 2 myofibers is an invariable feature of myotonic dystrophy type 2. Muscle Nerve 38:1405–1411PubMedCrossRef Pisani V, Panico MB, Terracciano C et al (2008) Preferential central nucleation of type 2 myofibers is an invariable feature of myotonic dystrophy type 2. Muscle Nerve 38:1405–1411PubMedCrossRef
14.
go back to reference Tsilfidis C, MacKenzie AE, Mettler G, Barcelo J, Korneluk RG (1992) Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat Genet 1:192–195PubMedCrossRef Tsilfidis C, MacKenzie AE, Mettler G, Barcelo J, Korneluk RG (1992) Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat Genet 1:192–195PubMedCrossRef
15.
go back to reference Harper PS, Harley HG, Reardon W et al (1992) Review article: anticipation in myotonic dystrophy: new light on an old problem. Am J Genet 51:10–16 Harper PS, Harley HG, Reardon W et al (1992) Review article: anticipation in myotonic dystrophy: new light on an old problem. Am J Genet 51:10–16
16.
go back to reference Schoser BGH, Kress W, Walter MC, Halliger-Keller B, ller HL, Ricker K (2004) Homozygosity for CCTG mutation in myotonic dystrophy type 2. Brain 127:1868–1877PubMedCrossRef Schoser BGH, Kress W, Walter MC, Halliger-Keller B, ller HL, Ricker K (2004) Homozygosity for CCTG mutation in myotonic dystrophy type 2. Brain 127:1868–1877PubMedCrossRef
17.
go back to reference Lamont PJ, Jacob RL, Mastaglia FL et al (2004) An expansion in the ZNF9 gene causes PROMM in a previously described family with an incidental CLCN1 mutation. J Neurol Neurosurg Psychiatry 75:343PubMedCrossRef Lamont PJ, Jacob RL, Mastaglia FL et al (2004) An expansion in the ZNF9 gene causes PROMM in a previously described family with an incidental CLCN1 mutation. J Neurol Neurosurg Psychiatry 75:343PubMedCrossRef
18.
go back to reference Suominen T, Schoser B, Raheem O et al (2008) High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol 255:1731–1736PubMedCrossRef Suominen T, Schoser B, Raheem O et al (2008) High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol 255:1731–1736PubMedCrossRef
19.
go back to reference Sun C, Van Ghelue M, Tranebjaerg L et al (2011) Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 80:574–580PubMedCrossRef Sun C, Van Ghelue M, Tranebjaerg L et al (2011) Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 80:574–580PubMedCrossRef
20.
go back to reference Dubowitz V (1985) Muscle biopsy. In: Dubowitz V (ed) A practical approach. Bailliere Tindall, London Dubowitz V (1985) Muscle biopsy. In: Dubowitz V (ed) A practical approach. Bailliere Tindall, London
21.
go back to reference Cardani R, Mancinelli E, Sansone V et al (2004) Biomolecular identification of (CCTG)n mutation in myotonic dystrophy type 2 (DM2) by FISH on muscle biopsy. Eur J Histochem 48:437–442PubMed Cardani R, Mancinelli E, Sansone V et al (2004) Biomolecular identification of (CCTG)n mutation in myotonic dystrophy type 2 (DM2) by FISH on muscle biopsy. Eur J Histochem 48:437–442PubMed
22.
go back to reference Boi S, Fascio U (1998) A method of quantitative measurement of fluorescence intensity by confocal laser scanning microscopy. J Comput Assist Microsc 10:163–166CrossRef Boi S, Fascio U (1998) A method of quantitative measurement of fluorescence intensity by confocal laser scanning microscopy. J Comput Assist Microsc 10:163–166CrossRef
23.
go back to reference Bonifazi E, Vallo L, Giardina E et al (2004) A long PCR-based molecular protocol for detecting normal and expanded ZNF9 alleles in myotonic dystrophy type 2. Diagn Mol Pathol 13:164–166PubMed Bonifazi E, Vallo L, Giardina E et al (2004) A long PCR-based molecular protocol for detecting normal and expanded ZNF9 alleles in myotonic dystrophy type 2. Diagn Mol Pathol 13:164–166PubMed
24.
go back to reference Nakamori M, Sobczak K, Moxley RT 3rd et al (2009) Scaled-down genetic analysis of myotonic dystrophy type 1 and type 2. Neuromuscul Disord 19:759–762PubMedCrossRef Nakamori M, Sobczak K, Moxley RT 3rd et al (2009) Scaled-down genetic analysis of myotonic dystrophy type 1 and type 2. Neuromuscul Disord 19:759–762PubMedCrossRef
25.
go back to reference Lehmann-Horn F, Mailänder V, Heine R et al (1995) Myotonia levior is a chloride channel disorder. Hum Mol Genet 4:1397–1402PubMedCrossRef Lehmann-Horn F, Mailänder V, Heine R et al (1995) Myotonia levior is a chloride channel disorder. Hum Mol Genet 4:1397–1402PubMedCrossRef
26.
go back to reference Botta A, Rinaldi F, Catalli C et al (2008) The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients. J Med Genet 45:639–646PubMedCrossRef Botta A, Rinaldi F, Catalli C et al (2008) The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients. J Med Genet 45:639–646PubMedCrossRef
27.
go back to reference Botta A, Bonifazi E, Vallo L et al (2006) Italian guidelines for molecular analysis in myotonic dystrophies. Acta Myol 25:23–33PubMed Botta A, Bonifazi E, Vallo L et al (2006) Italian guidelines for molecular analysis in myotonic dystrophies. Acta Myol 25:23–33PubMed
28.
go back to reference Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 19:423–434PubMedCrossRef Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 19:423–434PubMedCrossRef
29.
go back to reference Kanadia RN, Shin J, Yuan Y et al (2006) Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci 103:11748–11753PubMedCrossRef Kanadia RN, Shin J, Yuan Y et al (2006) Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci 103:11748–11753PubMedCrossRef
30.
go back to reference Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47PubMedCrossRef Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47PubMedCrossRef
31.
go back to reference Savkur RS, Philips AV, Cooper TA et al (2004) Insulin receptor splicing alteration in myotonic dystrophy type 2. Am J Hum Genet 74:1309–1313PubMedCrossRef Savkur RS, Philips AV, Cooper TA et al (2004) Insulin receptor splicing alteration in myotonic dystrophy type 2. Am J Hum Genet 74:1309–1313PubMedCrossRef
32.
go back to reference Mankodi A, Takahashi MP, Jiang H et al (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44PubMedCrossRef Mankodi A, Takahashi MP, Jiang H et al (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44PubMedCrossRef
33.
go back to reference Zhang J, Bendahhou S, Sanguinetti MC et al (2000) Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenita. Neurology 54:937–942PubMedCrossRef Zhang J, Bendahhou S, Sanguinetti MC et al (2000) Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenita. Neurology 54:937–942PubMedCrossRef
34.
go back to reference Charlet BN, Savkur RS, Singh G et al (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53CrossRef Charlet BN, Savkur RS, Singh G et al (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53CrossRef
Metadata
Title
Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2
Authors
Rosanna Cardani
Marzia Giagnacovo
Annalisa Botta
Fabrizio Rinaldi
Alessandra Morgante
Bjarne Udd
Olayinka Raheem
Sini Penttilä
Tiina Suominen
Laura V. Renna
Valeria Sansone
Enrico Bugiardini
Giuseppe Novelli
Giovanni Meola
Publication date
01-10-2012
Publisher
Springer-Verlag
Published in
Journal of Neurology / Issue 10/2012
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-012-6462-1

Other articles of this Issue 10/2012

Journal of Neurology 10/2012 Go to the issue

Pioneers in Neurology

Samuel Goldflam (1852–1932)