Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait

Authors: Mahyo Seyedali, Joseph M Czerniecki, David C Morgenroth, Michael E Hahn

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

Myoelectric control of upper extremity powered prostheses has been used clinically for many years, however this approach has not been fully developed for lower extremity prosthetic devices. With the advent of powered lower extremity prosthetic components, the potential role of myoelectric control systems is of increasing importance. An understanding of muscle activation patterns and their relationship to functional ambulation is a vital step in the future development of myoelectric control. Unusual knee muscle co-contractions have been reported in both limbs of trans-tibial amputees. It is currently unknown what differences exist in co-contraction between trans-tibial amputees and controls. This study compares the activation and co-contraction patterns of the ankle and knee musculature of trans-tibial amputees (intact and residual limbs), and able-bodied control subjects during three speeds of gait. It was hypothesized that residual limbs would have greater ankle muscle co-contraction than intact and able-bodied control limbs and that knee muscle co-contraction would be different among all limbs. Lastly it was hypothesized that the extent of muscle co-contraction would increase with walking speed.

Methods

Nine unilateral traumatic trans-tibial amputees and five matched controls participated. Surface electromyography recorded activation from the Tibialis Anterior, Medial Gastrocnemius, Vastus Lateralis and Biceps Femoris of the residual, intact and control limbs. A series of filters were applied to the signal to obtain a linear envelope of the activation patterns. A co-contraction area (ratio of the integrated agonist and antagonist activity) was calculated during specific phases of gait.

Results

Co-contraction of the ankle muscles was greater in the residual limb than in the intact and control limbs during all phases of gait. Knee muscle co-contraction was greater in the residual limb than in the control limb during all phases of gait.

Conclusion

Co-contractions may represent a limb stiffening strategy to enhance stability during phases of initial foot-contact and single limb support. These strategies may be functionally necessary for amputee gait; however, the presence of co-contractions could confound future development of myoelectric controls and should thus be accounted for.
Appendix
Available only for authorised users
Literature
1.
go back to reference Den Otter AR, Geurts ACH, Mulder T, Duysens J: Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture. 2004, 19: 270-278. 10.1016/S0966-6362(03)00071-7.CrossRefPubMed Den Otter AR, Geurts ACH, Mulder T, Duysens J: Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture. 2004, 19: 270-278. 10.1016/S0966-6362(03)00071-7.CrossRefPubMed
2.
go back to reference Schmitz A, Silder A, Heiderscheit B, Mahoney J, Thelen DG: Differences in lower-extremity muscular activation during walking between healthy older and young adults. J Electromyogr Kinesiol. 2009, 19: 1085-1091. 10.1016/j.jelekin.2008.10.008.PubMedCentralCrossRefPubMed Schmitz A, Silder A, Heiderscheit B, Mahoney J, Thelen DG: Differences in lower-extremity muscular activation during walking between healthy older and young adults. J Electromyogr Kinesiol. 2009, 19: 1085-1091. 10.1016/j.jelekin.2008.10.008.PubMedCentralCrossRefPubMed
3.
go back to reference Winter DA, Yack HJ: EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol. 1987, 67: 402-411. 10.1016/0013-4694(87)90003-4.CrossRefPubMed Winter DA, Yack HJ: EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol. 1987, 67: 402-411. 10.1016/0013-4694(87)90003-4.CrossRefPubMed
4.
go back to reference Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989, 7: 849-860. 10.1002/jor.1100070611.CrossRefPubMed Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989, 7: 849-860. 10.1002/jor.1100070611.CrossRefPubMed
5.
go back to reference Neptune RR, Sasaki K, Kautz SA: The effect of walking speed on muscle function and mechanical energetics. Gait Posture. 2008, 28: 135-143. 10.1016/j.gaitpost.2007.11.004.PubMedCentralCrossRefPubMed Neptune RR, Sasaki K, Kautz SA: The effect of walking speed on muscle function and mechanical energetics. Gait Posture. 2008, 28: 135-143. 10.1016/j.gaitpost.2007.11.004.PubMedCentralCrossRefPubMed
6.
go back to reference Perry J: Gait analysis : normal and pathological function. 1992, Thorofare, N.J.: SLACK inc. Perry J: Gait analysis : normal and pathological function. 1992, Thorofare, N.J.: SLACK inc.
7.
go back to reference Powers CM, Rao S, Perry J: Knee kinetics in trans-tibial amputee gait. Gait Posture. 1998, 8: 1-7. 10.1016/S0966-6362(98)00016-2.CrossRefPubMed Powers CM, Rao S, Perry J: Knee kinetics in trans-tibial amputee gait. Gait Posture. 1998, 8: 1-7. 10.1016/S0966-6362(98)00016-2.CrossRefPubMed
8.
go back to reference Winter DA, Sienko SE: Biomechanics of below-knee amputee gait. J Biomech. 1988, 21: 361-367. 10.1016/0021-9290(88)90142-X.CrossRefPubMed Winter DA, Sienko SE: Biomechanics of below-knee amputee gait. J Biomech. 1988, 21: 361-367. 10.1016/0021-9290(88)90142-X.CrossRefPubMed
9.
go back to reference Beyaert C, Grumillier C, Martinet N, Paysant J, Andre JM: Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees. Gait Posture. 2008, 28: 278-284. 10.1016/j.gaitpost.2007.12.073.CrossRefPubMed Beyaert C, Grumillier C, Martinet N, Paysant J, Andre JM: Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees. Gait Posture. 2008, 28: 278-284. 10.1016/j.gaitpost.2007.12.073.CrossRefPubMed
10.
go back to reference Fey NP, Silverman AK, Neptune RR: The influence of increasing steady-state walking speed on muscle activity in below-knee amputees. J Electromyogr Kinesiol. 2010, 20: 155-161. 10.1016/j.jelekin.2009.02.004.CrossRefPubMed Fey NP, Silverman AK, Neptune RR: The influence of increasing steady-state walking speed on muscle activity in below-knee amputees. J Electromyogr Kinesiol. 2010, 20: 155-161. 10.1016/j.jelekin.2009.02.004.CrossRefPubMed
11.
go back to reference Isakov E, Keren O, Benjuya N: Trans-tibial amputee gait: time-distance parameters and EMG activity. Prosthet Orthot Int. 2000, 24: 216-220. 10.1080/03093640008726550.CrossRefPubMed Isakov E, Keren O, Benjuya N: Trans-tibial amputee gait: time-distance parameters and EMG activity. Prosthet Orthot Int. 2000, 24: 216-220. 10.1080/03093640008726550.CrossRefPubMed
12.
go back to reference Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C: Knee muscle activity during ambulation of trans-tibial amputees. J Rehabil Med. 2001, 33: 196-199. 10.1080/165019701750419572.CrossRefPubMed Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C: Knee muscle activity during ambulation of trans-tibial amputees. J Rehabil Med. 2001, 33: 196-199. 10.1080/165019701750419572.CrossRefPubMed
13.
go back to reference Centomo H, Amarantini D, Martin L, Prince F: Differences in the coordination of agonist and antagonist muscle groups in below-knee amputee and able-bodied children during dynamic exercise. J Electromyogr Kinesiol. 2008, 18: 487-494. 10.1016/j.jelekin.2006.11.008.CrossRefPubMed Centomo H, Amarantini D, Martin L, Prince F: Differences in the coordination of agonist and antagonist muscle groups in below-knee amputee and able-bodied children during dynamic exercise. J Electromyogr Kinesiol. 2008, 18: 487-494. 10.1016/j.jelekin.2006.11.008.CrossRefPubMed
14.
go back to reference Centomo H, Amarantini D, Martin L, Prince F: Muscle adaptation patterns of children with a trans-tibial amputation during walking. Clinical Biomechanics. 2007, 22: 457-463. 10.1016/j.clinbiomech.2006.11.005.CrossRefPubMed Centomo H, Amarantini D, Martin L, Prince F: Muscle adaptation patterns of children with a trans-tibial amputation during walking. Clinical Biomechanics. 2007, 22: 457-463. 10.1016/j.clinbiomech.2006.11.005.CrossRefPubMed
15.
go back to reference Au SK, Bonato P, Herr H: An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study. Rehabilitation Robotics, 2005 ICORR 2005 9th International Conference on. 2005, 375-379.CrossRef Au SK, Bonato P, Herr H: An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study. Rehabilitation Robotics, 2005 ICORR 2005 9th International Conference on. 2005, 375-379.CrossRef
16.
go back to reference Au S, Berniker M, Herr H: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008, 21: 654-666. 10.1016/j.neunet.2008.03.006.CrossRefPubMed Au S, Berniker M, Herr H: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008, 21: 654-666. 10.1016/j.neunet.2008.03.006.CrossRefPubMed
17.
go back to reference Peeraer L, Aeyels B, Van der Perre G: Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. J Biomed Eng. 1990, 12: 178-182. 10.1016/0141-5425(90)90037-N.CrossRefPubMed Peeraer L, Aeyels B, Van der Perre G: Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. J Biomed Eng. 1990, 12: 178-182. 10.1016/0141-5425(90)90037-N.CrossRefPubMed
18.
19.
go back to reference Damiano D: Reviewing Muscle Cocontraction: Is It a Developmental, Pathological, or Motor Control Issue?. Phys Occup Ther Pediatr. 1993, 12: 3- Damiano D: Reviewing Muscle Cocontraction: Is It a Developmental, Pathological, or Motor Control Issue?. Phys Occup Ther Pediatr. 1993, 12: 3-
20.
go back to reference Hof AL, Elzinga H, Grimmius W, Halbertsma JP: Speed dependence of averaged EMG profiles in walking. Gait Posture. 2002, 16: 78-86. 10.1016/S0966-6362(01)00206-5.CrossRefPubMed Hof AL, Elzinga H, Grimmius W, Halbertsma JP: Speed dependence of averaged EMG profiles in walking. Gait Posture. 2002, 16: 78-86. 10.1016/S0966-6362(01)00206-5.CrossRefPubMed
21.
go back to reference Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR: Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture. 2008, 28: 602-609. 10.1016/j.gaitpost.2008.04.005.CrossRefPubMed Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR: Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture. 2008, 28: 602-609. 10.1016/j.gaitpost.2008.04.005.CrossRefPubMed
22.
go back to reference Delagi EF, Perotto A: Anatomic guide for the electromyographer--the limbs. 1979, Springfield, Ill: Thomas, 2d edn Delagi EF, Perotto A: Anatomic guide for the electromyographer--the limbs. 1979, Springfield, Ill: Thomas, 2d edn
23.
go back to reference Damiano DL, Martellotta TL, Sullivan DJ, Granata KP, Abel MF: Muscle force production and functional performance in spastic cerebral palsy: relationship of cocontraction. Arch Phys Med Rehabil. 2000, 81: 895-900. 10.1053/apmr.2000.5579.CrossRefPubMed Damiano DL, Martellotta TL, Sullivan DJ, Granata KP, Abel MF: Muscle force production and functional performance in spastic cerebral palsy: relationship of cocontraction. Arch Phys Med Rehabil. 2000, 81: 895-900. 10.1053/apmr.2000.5579.CrossRefPubMed
24.
go back to reference Basmajian JV, De Luca CJ: Muscles alive : their functions revealed by electromyography. 1985, Baltimore: Williams & Wilkins, 5 Basmajian JV, De Luca CJ: Muscles alive : their functions revealed by electromyography. 1985, Baltimore: Williams & Wilkins, 5
25.
go back to reference Byrne CA, O'Keeffe DT, Donnelly AE, Lyons GM: Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction. J Electromyogr Kinesiol. 2007, 17: 605-616. 10.1016/j.jelekin.2006.07.008.CrossRefPubMed Byrne CA, O'Keeffe DT, Donnelly AE, Lyons GM: Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction. J Electromyogr Kinesiol. 2007, 17: 605-616. 10.1016/j.jelekin.2006.07.008.CrossRefPubMed
26.
go back to reference Rietman JS, Postema K, Geertzen JH: Gait analysis in prosthetics: opinions, ideas and conclusions. Prosthet Orthot Int. 2002, 26: 50-57. 10.1080/03093640208726621.CrossRefPubMed Rietman JS, Postema K, Geertzen JH: Gait analysis in prosthetics: opinions, ideas and conclusions. Prosthet Orthot Int. 2002, 26: 50-57. 10.1080/03093640208726621.CrossRefPubMed
27.
go back to reference McGeer T: Passive dynamic walking. The International Journal of Robotics Research. 1990, 9: 62-10.1177/027836499000900206.CrossRef McGeer T: Passive dynamic walking. The International Journal of Robotics Research. 1990, 9: 62-10.1177/027836499000900206.CrossRef
28.
go back to reference Busse ME, Wiles CM, van Deursen RWM: Muscle co-activation in neurological conditions. Physical Therapy Reviews. 2005, 10: 247-253. 10.1179/108331905X78915.CrossRef Busse ME, Wiles CM, van Deursen RWM: Muscle co-activation in neurological conditions. Physical Therapy Reviews. 2005, 10: 247-253. 10.1179/108331905X78915.CrossRef
29.
go back to reference Frost G, Dowling J, Dyson K, Bar-Or O: Cocontraction in three age groups of children during treadmill locomotion. J Electromyogr Kinesiol. 1997, 7: 179-186. 10.1016/S1050-6411(97)84626-3.CrossRefPubMed Frost G, Dowling J, Dyson K, Bar-Or O: Cocontraction in three age groups of children during treadmill locomotion. J Electromyogr Kinesiol. 1997, 7: 179-186. 10.1016/S1050-6411(97)84626-3.CrossRefPubMed
30.
go back to reference Unnithan V, Dowling J, Frost G, Volpe Ayub B, Bar-Or O: Cocontraction and phasic activity during gait in children with cerebral palsy. Electromyogr Clin Neurophysiol. 1996, 36: 487-494.PubMed Unnithan V, Dowling J, Frost G, Volpe Ayub B, Bar-Or O: Cocontraction and phasic activity during gait in children with cerebral palsy. Electromyogr Clin Neurophysiol. 1996, 36: 487-494.PubMed
31.
go back to reference Bowsher KA, Damiano DL, Vaughan CL: Joint torques and co-contraction during gait for normal and cerebral palsy children. J Biomech. 1993, 26: 326-CrossRef Bowsher KA, Damiano DL, Vaughan CL: Joint torques and co-contraction during gait for normal and cerebral palsy children. J Biomech. 1993, 26: 326-CrossRef
32.
go back to reference Amarantini D, Martin L: A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions. J Biomech. 2004, 37: 1393-1404. 10.1016/j.jbiomech.2003.12.020.CrossRefPubMed Amarantini D, Martin L: A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions. J Biomech. 2004, 37: 1393-1404. 10.1016/j.jbiomech.2003.12.020.CrossRefPubMed
33.
go back to reference Falconer K, Winter DA: Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr Clin Neurophysiol. 1985, 25: 135-149.PubMed Falconer K, Winter DA: Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr Clin Neurophysiol. 1985, 25: 135-149.PubMed
34.
go back to reference Fung J, Barbeau H: A dynamic EMG profile index to quantify muscular activation disorder in spastic paretic gait. Electroencephalogr Clin Neurophysiol. 1989, 73: 233-244. 10.1016/0013-4694(89)90124-7.CrossRefPubMed Fung J, Barbeau H: A dynamic EMG profile index to quantify muscular activation disorder in spastic paretic gait. Electroencephalogr Clin Neurophysiol. 1989, 73: 233-244. 10.1016/0013-4694(89)90124-7.CrossRefPubMed
35.
go back to reference Kellis E, Arabatzi F, Papadopoulos C: Muscle co-activation around the knee in drop jumping using the co-contraction index. J Electromyogr Kinesiol. 2003, 13: 229-238. 10.1016/S1050-6411(03)00020-8.CrossRefPubMed Kellis E, Arabatzi F, Papadopoulos C: Muscle co-activation around the knee in drop jumping using the co-contraction index. J Electromyogr Kinesiol. 2003, 13: 229-238. 10.1016/S1050-6411(03)00020-8.CrossRefPubMed
Metadata
Title
Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait
Authors
Mahyo Seyedali
Joseph M Czerniecki
David C Morgenroth
Michael E Hahn
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-29

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue