Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2023

Open Access 01-12-2023 | Research

Clustering trunk movements of children and adolescents with neurological gait disorders undergoing robot-assisted gait therapy: the functional ability determines if actuated pelvis movements are clinically useful

Authors: Florian van Dellen, Tabea Aurich-Schuler, Nikolas Hesse, Rob Labruyère

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2023

Login to get access

Abstract

Introduction

Robot-assisted gait therapy is frequently used for gait therapy in children and adolescents but has been shown to limit the physiological excursions of the trunk and pelvis. Actuated pelvis movements might support more physiological trunk patterns during robot-assisted training. However, not every patient is expected to react identically to actuated pelvis movements. Therefore, the aim of the present study was to identify different trunk movement patterns with and without actuated pelvis movements and compare them based on their similarity to the physiological gait pattern.

Methods and results

A clustering algorithm was used to separate pediatric patients into three groups based on different kinematic reactions of the trunk to walking with and without actuated pelvis movements. The three clusters included 9, 11 and 15 patients and showed weak to strong correlations with physiological treadmill gait. The groups also statistically differed in clinical assessment scores, which were consistent with the strength of the correlations. Patients with a higher gait capacity reacted with more physiological trunk movements to actuated pelvis movements.

Conclusion

Actuated pelvis movements do not lead to physiological trunk movements in patients with a poor trunk control, while patients with better walking functions can show physiological trunk movements. Therapists should carefully consider for whom and why they decide to include actuated pelvis movements in their therapy plan.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rast FM, Labruyère R. ICF mobility and self-care goals of children in inpatient rehabilitation. Dev Med Child Neurol. 2020;62(4):483–8.CrossRefPubMed Rast FM, Labruyère R. ICF mobility and self-care goals of children in inpatient rehabilitation. Dev Med Child Neurol. 2020;62(4):483–8.CrossRefPubMed
2.
go back to reference Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017;2017(5). Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017;2017(5).
3.
go back to reference van Kammen K, Boonstra AM, van der Woude LHV, Visscher C, Reinders-Messelink HA, den Otter R. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disabil Rehabil. 2020;42(21):2977–85.CrossRefPubMed van Kammen K, Boonstra AM, van der Woude LHV, Visscher C, Reinders-Messelink HA, den Otter R. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disabil Rehabil. 2020;42(21):2977–85.CrossRefPubMed
4.
go back to reference Wallard L, Dietrich G, Kerlirzin Y, Bredin J. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy. Gait Posture. 2018;60:55–60.CrossRefPubMed Wallard L, Dietrich G, Kerlirzin Y, Bredin J. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy. Gait Posture. 2018;60:55–60.CrossRefPubMed
5.
go back to reference Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496–502.CrossRefPubMed Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496–502.CrossRefPubMed
6.
go back to reference Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90(2):137–49.CrossRefPubMed Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90(2):137–49.CrossRefPubMed
7.
go back to reference Ammann-Reiffer C, Bastiaenen CHG, Meyer-Heim AD, Van Hedel HJA. Lessons learned from conducting a pragmatic, randomized, crossover trial on robot-assisted gait training in children with cerebral palsy (PeLoGAIT). J Pediatr Rehabil Med. 2020;13(2):137–48.CrossRefPubMedPubMedCentral Ammann-Reiffer C, Bastiaenen CHG, Meyer-Heim AD, Van Hedel HJA. Lessons learned from conducting a pragmatic, randomized, crossover trial on robot-assisted gait training in children with cerebral palsy (PeLoGAIT). J Pediatr Rehabil Med. 2020;13(2):137–48.CrossRefPubMedPubMedCentral
8.
go back to reference Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):38–48.CrossRefPubMed Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):38–48.CrossRefPubMed
9.
go back to reference Aurich-Schuler T, Grob F, van Hedel HJA, Labruyère R. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J Neuroeng Rehabil. 2017;14(1):76.CrossRefPubMedPubMedCentral Aurich-Schuler T, Grob F, van Hedel HJA, Labruyère R. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J Neuroeng Rehabil. 2017;14(1):76.CrossRefPubMedPubMedCentral
10.
go back to reference van Kammen K, Boonstra AM, van der Woude LHV, Reinders-Messelink HA, den Otter R. The combined effects of guidance force, bodyweight support and gait speed on muscle activity during able-bodied walking in the Lokomat. Clin Biomech. 2016;36:65–73.CrossRef van Kammen K, Boonstra AM, van der Woude LHV, Reinders-Messelink HA, den Otter R. The combined effects of guidance force, bodyweight support and gait speed on muscle activity during able-bodied walking in the Lokomat. Clin Biomech. 2016;36:65–73.CrossRef
11.
go back to reference Aurich-Schuler T, Labruyère R. An increase in kinematic freedom in the Lokomat is related to the ability to elicit a physiological muscle activity pattern: a secondary data analysis investigating differences between guidance force, path control, and FreeD. Front Robot AI. 2019;31:6. Aurich-Schuler T, Labruyère R. An increase in kinematic freedom in the Lokomat is related to the ability to elicit a physiological muscle activity pattern: a secondary data analysis investigating differences between guidance force, path control, and FreeD. Front Robot AI. 2019;31:6.
12.
go back to reference Xiang XN, Ding MF, Zong HY, Liu Y, Cheng H, He CQ, et al. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study. Spinal Cord. 2020;58(7):787–94.CrossRefPubMed Xiang XN, Ding MF, Zong HY, Liu Y, Cheng H, He CQ, et al. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study. Spinal Cord. 2020;58(7):787–94.CrossRefPubMed
13.
go back to reference Schwartz MH, Rozumalski A, Trost JP. The effect of walking speed on the gait of typically developing children. J Biomech. 2008;41(8):1639–50.CrossRefPubMed Schwartz MH, Rozumalski A, Trost JP. The effect of walking speed on the gait of typically developing children. J Biomech. 2008;41(8):1639–50.CrossRefPubMed
14.
go back to reference Macpherson TW, Taylor J, McBain T, Weston M, Spears IR. Real-time measurement of pelvis and trunk kinematics during treadmill locomotion using a low-cost depth-sensing camera: a concurrent validity study. J Biomech. 2016;49(3):474–8.CrossRefPubMed Macpherson TW, Taylor J, McBain T, Weston M, Spears IR. Real-time measurement of pelvis and trunk kinematics during treadmill locomotion using a low-cost depth-sensing camera: a concurrent validity study. J Biomech. 2016;49(3):474–8.CrossRefPubMed
15.
go back to reference Attias M, Bonnefoy-Mazure A, Lempereur M, Lascombes P, De Coulon G, Armand S. Trunk movements during gait in cerebral palsy. Clin Biomech. 2015;30(1):28–32.CrossRef Attias M, Bonnefoy-Mazure A, Lempereur M, Lascombes P, De Coulon G, Armand S. Trunk movements during gait in cerebral palsy. Clin Biomech. 2015;30(1):28–32.CrossRef
16.
go back to reference Aurich-Schuler T, Gut A, Labruyère R. The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people—a proof of concept study. J Neuroeng Rehabil. 2019;16(1):26.CrossRefPubMedPubMedCentral Aurich-Schuler T, Gut A, Labruyère R. The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people—a proof of concept study. J Neuroeng Rehabil. 2019;16(1):26.CrossRefPubMedPubMedCentral
17.
go back to reference Swinnen E, Baeyens JP, Knaepen K, Michielsen M, Hens G, Clijsen R, et al. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics. Disabil Rehabil Assist Technol. 2015;10(3):252–7.CrossRefPubMed Swinnen E, Baeyens JP, Knaepen K, Michielsen M, Hens G, Clijsen R, et al. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics. Disabil Rehabil Assist Technol. 2015;10(3):252–7.CrossRefPubMed
18.
go back to reference Hidler JM, Wall AE. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005;20(2):184–93.CrossRef Hidler JM, Wall AE. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005;20(2):184–93.CrossRef
19.
go back to reference Hocoma AG. LokomatPro Benutzerhandbuch. 2017th-10th–2nd ed. Volketswil, Schweiz: Hocoma AG; 2017. Hocoma AG. LokomatPro Benutzerhandbuch. 2017th-10th–2nd ed. Volketswil, Schweiz: Hocoma AG; 2017.
20.
go back to reference Osman AAA, Bolkart T, Black MJ. STAR: Sparse Trained Articulated Human Body Regressor. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020;12351 LNCS:598–613. Osman AAA, Bolkart T, Black MJ. STAR: Sparse Trained Articulated Human Body Regressor. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020;12351 LNCS:598–613.
21.
go back to reference van Dellen F, Hesse N, Labruyère R. Markerless motion tracking to quantify behavioral changes during robot-assisted gait training: a validation study. Front Robot AI. 2023;6:10. van Dellen F, Hesse N, Labruyère R. Markerless motion tracking to quantify behavioral changes during robot-assisted gait training: a validation study. Front Robot AI. 2023;6:10.
22.
go back to reference Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27(4):710–4.CrossRefPubMed Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27(4):710–4.CrossRefPubMed
23.
go back to reference Heyrman L, Molenaers G, Desloovere K, Verheyden G, De Cat J, Monbaliu E, et al. A clinical tool to measure trunk control in children with cerebral palsy: the Trunk Control Measurement Scale. Res Dev Disabil. 2011;32(6):2624–35.CrossRefPubMed Heyrman L, Molenaers G, Desloovere K, Verheyden G, De Cat J, Monbaliu E, et al. A clinical tool to measure trunk control in children with cerebral palsy: the Trunk Control Measurement Scale. Res Dev Disabil. 2011;32(6):2624–35.CrossRefPubMed
24.
go back to reference Novacheck TF, Stout JL, Tervo R. Reliability and validity of the Gillette Functional Assessment Questionnaire as an outcome measure in children with walking disabilities. J Pediatric Orthopaedics. 2000;20(1):75–81.CrossRef Novacheck TF, Stout JL, Tervo R. Reliability and validity of the Gillette Functional Assessment Questionnaire as an outcome measure in children with walking disabilities. J Pediatric Orthopaedics. 2000;20(1):75–81.CrossRef
25.
go back to reference Ammann-Reiffer C, Bastiaenen CHG, Van Hedel HJA. Measuring change in gait performance of children with motor disorders: assessing the Functional Mobility Scale and the Gillette Functional Assessment Questionnaire walking scale. Dev Med Child Neurol. 2019;61(6):717–24.CrossRefPubMed Ammann-Reiffer C, Bastiaenen CHG, Van Hedel HJA. Measuring change in gait performance of children with motor disorders: assessing the Functional Mobility Scale and the Gillette Functional Assessment Questionnaire walking scale. Dev Med Child Neurol. 2019;61(6):717–24.CrossRefPubMed
26.
go back to reference Verbecque E, Lobo Da Costa PH, Vereeck L, Hallemans A. Psychometric properties of functional balance tests in children: a literature review. Dev Med Child Neurol. 2015;57(6):521–9.CrossRefPubMed Verbecque E, Lobo Da Costa PH, Vereeck L, Hallemans A. Psychometric properties of functional balance tests in children: a literature review. Dev Med Child Neurol. 2015;57(6):521–9.CrossRefPubMed
27.
go back to reference Katz-Leurer M, Rotem H, Keren O, Meyer S. Balance abilities and gait characteristics in post-traumatic brain injury, cerebral palsy and typically developed children. Dev Neurorehabil. 2009;12(2):100–5.CrossRefPubMed Katz-Leurer M, Rotem H, Keren O, Meyer S. Balance abilities and gait characteristics in post-traumatic brain injury, cerebral palsy and typically developed children. Dev Neurorehabil. 2009;12(2):100–5.CrossRefPubMed
28.
go back to reference O’Malley MJ, Abel MF, Damiano DL, Vaughan CL. Fuzzy clustering of children with cerebral palsy based on temporal- distance gait parameters. IEEE Trans Rehabil Eng. 1997;5(4):300–9.CrossRefPubMed O’Malley MJ, Abel MF, Damiano DL, Vaughan CL. Fuzzy clustering of children with cerebral palsy based on temporal- distance gait parameters. IEEE Trans Rehabil Eng. 1997;5(4):300–9.CrossRefPubMed
29.
go back to reference Chau T. A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods. Gait Posture. 2001;13(1):49–66.CrossRefPubMed Chau T. A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods. Gait Posture. 2001;13(1):49–66.CrossRefPubMed
30.
go back to reference Giorgino T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J Stat Softw. 2009;31(7):1–24.CrossRef Giorgino T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J Stat Softw. 2009;31(7):1–24.CrossRef
31.
go back to reference Sarda-Espinosa A. Comparing time-series clustering algorithms in r using the dtwclust package. R Package Vignette. 2017;12:41. Sarda-Espinosa A. Comparing time-series clustering algorithms in r using the dtwclust package. R Package Vignette. 2017;12:41.
32.
go back to reference Evans JD. Straightforward Statistics for the Behavioral Sciences. Pacific Grove, California: Brooks/Cole Pub. Co: An International Thomsom Publ. Co.; 1996. Evans JD. Straightforward Statistics for the Behavioral Sciences. Pacific Grove, California: Brooks/Cole Pub. Co: An International Thomsom Publ. Co.; 1996.
33.
go back to reference Duarte E, Marco E, Muniesa JM, Belmonte R, Diaz P, Tejero M, et al. Trunk control test as a functional predictor in stroke patients. J Rehabil Med. 2002;34(6):267–72.CrossRefPubMed Duarte E, Marco E, Muniesa JM, Belmonte R, Diaz P, Tejero M, et al. Trunk control test as a functional predictor in stroke patients. J Rehabil Med. 2002;34(6):267–72.CrossRefPubMed
34.
go back to reference Quinzaños-Fresnedo J, Fratini-Escobar PC, Almaguer-Benavides KM, Aguirre-Güemez AV, Barrera-Ortíz A, Pérez-Zavala R, et al. Prognostic validity of a clinical trunk control test for independence and walking in individuals with spinal cord injury. J Spinal Cord Med. 2020;43(3):331–8.CrossRefPubMed Quinzaños-Fresnedo J, Fratini-Escobar PC, Almaguer-Benavides KM, Aguirre-Güemez AV, Barrera-Ortíz A, Pérez-Zavala R, et al. Prognostic validity of a clinical trunk control test for independence and walking in individuals with spinal cord injury. J Spinal Cord Med. 2020;43(3):331–8.CrossRefPubMed
35.
go back to reference Wallard L, Dietrich G, Kerlirzin Y, Bredin J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur J Paediatr Neurol. 2017;21(3):557–64.CrossRefPubMed Wallard L, Dietrich G, Kerlirzin Y, Bredin J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur J Paediatr Neurol. 2017;21(3):557–64.CrossRefPubMed
36.
go back to reference Sawers A, Hahn ME. Gradual training reduces practice difficulty while preserving motor learning of a novel locomotor task. Hum Mov Sci. 2013;32(4):605–17.CrossRefPubMed Sawers A, Hahn ME. Gradual training reduces practice difficulty while preserving motor learning of a novel locomotor task. Hum Mov Sci. 2013;32(4):605–17.CrossRefPubMed
37.
go back to reference Sartor C, Alderink G, Greenwald H, Elders L. Critical kinematic events occurring in the trunk during walking. Hum Mov Sci. 1999;18(5):669–79.CrossRef Sartor C, Alderink G, Greenwald H, Elders L. Critical kinematic events occurring in the trunk during walking. Hum Mov Sci. 1999;18(5):669–79.CrossRef
38.
go back to reference Arvin M, van Dieën JH, Bruijn SM. Effects of constrained trunk movement on frontal plane gait kinematics. J Biomech. 2016;49(13):3085–9.CrossRefPubMed Arvin M, van Dieën JH, Bruijn SM. Effects of constrained trunk movement on frontal plane gait kinematics. J Biomech. 2016;49(13):3085–9.CrossRefPubMed
39.
go back to reference van Hedel HJA, Meyer-Heim A, Rüsch-Bohtz C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev Neurorehabil. 2016;19(6):410–5.CrossRefPubMed van Hedel HJA, Meyer-Heim A, Rüsch-Bohtz C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev Neurorehabil. 2016;19(6):410–5.CrossRefPubMed
40.
go back to reference Tesio L, Rota V. The motion of body center of mass during walking: a review oriented to clinical applications. Front Neurol. 2019;20:10. Tesio L, Rota V. The motion of body center of mass during walking: a review oriented to clinical applications. Front Neurol. 2019;20:10.
41.
go back to reference Aurich T, van Dellen F, Labruyère R. Timing of the FreeD module’s lateral translation in the gait robot Lokomat: a manual adaptation is necessary. submitted. 2022. Aurich T, van Dellen F, Labruyère R. Timing of the FreeD module’s lateral translation in the gait robot Lokomat: a manual adaptation is necessary. submitted. 2022.
42.
Metadata
Title
Clustering trunk movements of children and adolescents with neurological gait disorders undergoing robot-assisted gait therapy: the functional ability determines if actuated pelvis movements are clinically useful
Authors
Florian van Dellen
Tabea Aurich-Schuler
Nikolas Hesse
Rob Labruyère
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2023
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-023-01200-0

Other articles of this Issue 1/2023

Journal of NeuroEngineering and Rehabilitation 1/2023 Go to the issue