Skip to main content
Top
Published in: Comparative Clinical Pathology 5/2020

Open Access 01-10-2020 | Clostridium | Original Article

In silico analysis of a chimeric fusion protein as a new vaccine candidate against Clostridium perfringens type A and Clostridium septicum alpha toxins

Authors: Ali Haghroosta, Hossein Goudarzi, Ebrahim Faghihloo, Zohreh Ghalavand, Mohammad Mahdi Ranjbar, Reza Pilehchian Langroudi

Published in: Comparative Clinical Pathology | Issue 5/2020

Login to get access

Abstract

In silico analysis is the most important approach to understand protein structure and functions, and the most important problem for designing and producing a fusion construct is producing large amounts of functional protein. Clostridium perfringens type A and Clostridium septicum produce alpha (plc) and alpha toxins respectively. C. perfringens can cause gas gangrene and gastrointestinal diseases. C. septicum can cause traumatic and non-traumatic gas gangrene. The aim of current research was in silico analysis of a chimeric fusion protein against C. perfringens type A and C. septicum alpha toxins. Firstly, the chimeric fusion gene was designed according to nucleotide sequences of C. perfringens type A alpha (KY584046.1) and C. septicum alpha (JN793989.2) toxin genes and then its fusion protein is constructed by amino acid sequences of C. perfringens type A and C. septicum alpha toxins. Secondly, online software was used to determine prediction of secondary and tertiary structures and physicochemical characteristics of the fusion protein. Finally, the validation of the fusion protein was confirmed by Rampage and proSA program. The designed fusion protein has 777 amino acids in length. TASSER server and physicochemical parameters are showed: C-score = − 2.68 and molecular weight = 87.9 KD respectively. Rampage and proSA software revealed the fusion protein is valid. Deposited accession number for the sequence of the fusion gene in the GenBank is MK908396. The designed fusion protein is valid and functional. Thus, the fusion gene could be used for clone and expression in a proper prokaryotic cell and also as a recombinant vaccine candidate.
Literature
go back to reference Ballard J, Sokolov Y, Yuan WL, Kagan B, Tweten R (1993) Activation and mechanism of Clostridium septicum alpha toxin. Mol Microbiol 10(3):627–634PubMedCrossRef Ballard J, Sokolov Y, Yuan WL, Kagan B, Tweten R (1993) Activation and mechanism of Clostridium septicum alpha toxin. Mol Microbiol 10(3):627–634PubMedCrossRef
go back to reference Ballard J, Crabtree J, Roe BA, Tweten RK (1995) The primary structure of Clostridium septicum alpha- toxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect Immun 63(1):340–344PubMedPubMedCentralCrossRef Ballard J, Crabtree J, Roe BA, Tweten RK (1995) The primary structure of Clostridium septicum alpha- toxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect Immun 63(1):340–344PubMedPubMedCentralCrossRef
go back to reference Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369PubMedCrossRef Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369PubMedCrossRef
go back to reference Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150PubMedCrossRef Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150PubMedCrossRef
go back to reference Dwivedi P, Kaushik S, Tomar R (2015) Towards an understanding on toxins and infectious diseases of Clostridium perfringens vis-a-vis prospective recombinant vaccines. Int J Curr Microbiol App Sci 4(11):356–371 Dwivedi P, Kaushik S, Tomar R (2015) Towards an understanding on toxins and infectious diseases of Clostridium perfringens vis-a-vis prospective recombinant vaccines. Int J Curr Microbiol App Sci 4(11):356–371
go back to reference Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Totowa, pp 71–607 Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Totowa, pp 71–607
go back to reference Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF chimera. J Struct Biol 157(1):281–287PubMedCrossRef Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF chimera. J Struct Biol 157(1):281–287PubMedCrossRef
go back to reference Gordon VM, Benz R, Fujii K, Leppla SH, Tweten RK (1997) Clostridium septicum alpha-toxin is proteolytically activated by furin. Infect Immun 65(10):4130–4134PubMedPubMedCentralCrossRef Gordon VM, Benz R, Fujii K, Leppla SH, Tweten RK (1997) Clostridium septicum alpha-toxin is proteolytically activated by furin. Infect Immun 65(10):4130–4134PubMedPubMedCentralCrossRef
go back to reference Guex N, Peitsch MC (1997) SWISSMODEL and the SwissPdb viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–23 Guex N, Peitsch MC (1997) SWISSMODEL and the SwissPdb viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–23
go back to reference Imagawa T, Dohi Y, Higashi Y (1994) Cloning, nucleotide sequence and expression of a hemolysin gene of Clostridium septicum. FEMS Microbiol Lett 117(3):287–292PubMedCrossRef Imagawa T, Dohi Y, Higashi Y (1994) Cloning, nucleotide sequence and expression of a hemolysin gene of Clostridium septicum. FEMS Microbiol Lett 117(3):287–292PubMedCrossRef
go back to reference Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240PubMedPubMedCentralCrossRef Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240PubMedPubMedCentralCrossRef
go back to reference Kamalirousta M, Pilehchian R (2018) Development of a new bifunctional fusion protein of vaccine strains Clostridium perfringens type D and Clostridium septicum epsilon-alpha toxin genes. Microbiol Res J Int 23(2):1–9CrossRef Kamalirousta M, Pilehchian R (2018) Development of a new bifunctional fusion protein of vaccine strains Clostridium perfringens type D and Clostridium septicum epsilon-alpha toxin genes. Microbiol Res J Int 23(2):1–9CrossRef
go back to reference Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858PubMedPubMedCentralCrossRef Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858PubMedPubMedCentralCrossRef
go back to reference Knapp O, Maier E, Mkaddem SB, Benz R, Bens M, Chenal A et al (2010) Clostridium septicum alpha- toxin forms pores and induces rapid cell necrosis. Toxicon 55(1):61–72PubMedCrossRef Knapp O, Maier E, Mkaddem SB, Benz R, Bens M, Chenal A et al (2010) Clostridium septicum alpha- toxin forms pores and induces rapid cell necrosis. Toxicon 55(1):61–72PubMedCrossRef
go back to reference Langroudi RP, Pour KA, Shamsara M, Jabbari A, Habibi G, Goudarzi H et al (2011) Fusion of Clostridium perfringens type D and B epsilon and beta toxin genes and it's cloning in E. coli. Arch Razi Inst 66(1):1–10 Langroudi RP, Pour KA, Shamsara M, Jabbari A, Habibi G, Goudarzi H et al (2011) Fusion of Clostridium perfringens type D and B epsilon and beta toxin genes and it's cloning in E. coli. Arch Razi Inst 66(1):1–10
go back to reference Langroudi RP, Aghaiypour K, Shamsara M, Ghorashi SA (2012) In silico fusion of epsilon and beta toxin genes of Clostridium perfringens types D and B. Iran J Biotechnol 10(1):54–60 Langroudi RP, Aghaiypour K, Shamsara M, Ghorashi SA (2012) In silico fusion of epsilon and beta toxin genes of Clostridium perfringens types D and B. Iran J Biotechnol 10(1):54–60
go back to reference Laskowski RA, Watson JD, Thornton JM (2005a) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33(suppl_2):W89–W93PubMedPubMedCentralCrossRef Laskowski RA, Watson JD, Thornton JM (2005a) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33(suppl_2):W89–W93PubMedPubMedCentralCrossRef
go back to reference Laskowski RA, Watson JD, Thornton JM (2005b) Protein function prediction using local 3D templates. J Mol Biol 351(3):614–626PubMedCrossRef Laskowski RA, Watson JD, Thornton JM (2005b) Protein function prediction using local 3D templates. J Mol Biol 351(3):614–626PubMedCrossRef
go back to reference Lovell SC, Davis IW, Arendall WB III, De Bakker PI, Word JM, Prisant MG et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics 50(3):437–450CrossRef Lovell SC, Davis IW, Arendall WB III, De Bakker PI, Word JM, Prisant MG et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics 50(3):437–450CrossRef
go back to reference Naylor CE, Eaton JT, Howells A, Justin N, Moss DS, Titball RW, Basak AK (1998) Structure of the key toxin in gas gangrene. Nat Struct Biol 5(8):738–746PubMedCrossRef Naylor CE, Eaton JT, Howells A, Justin N, Moss DS, Titball RW, Basak AK (1998) Structure of the key toxin in gas gangrene. Nat Struct Biol 5(8):738–746PubMedCrossRef
go back to reference Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786PubMedCrossRef Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786PubMedCrossRef
go back to reference Petit L, Gibert M, Popoff MR (1999) Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7(3):104–110PubMedCrossRef Petit L, Gibert M, Popoff MR (1999) Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7(3):104–110PubMedCrossRef
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612PubMedCrossRef Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612PubMedCrossRef
go back to reference Saint-Joanis B, Garnier T, Cole ST (1989) Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities. Mol Gen Genet MGG 219(3):453–460PubMedCrossRef Saint-Joanis B, Garnier T, Cole ST (1989) Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities. Mol Gen Genet MGG 219(3):453–460PubMedCrossRef
go back to reference Sakurai J, Nagahama M, Oda M (2004) Clostridium perfringens alpha-toxin: characterization and mode of action. J Biochem 136(5):569–574PubMedCrossRef Sakurai J, Nagahama M, Oda M (2004) Clostridium perfringens alpha-toxin: characterization and mode of action. J Biochem 136(5):569–574PubMedCrossRef
go back to reference Sippl MJ (1993) Recognition of errors in threedimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics 17(4):355–62 Sippl MJ (1993) Recognition of errors in threedimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics 17(4):355–62
go back to reference Takahashi T, Sugahara T, Ohsaka A (1974) Purification of Clostridium perfringens phospholipase C (α- toxin) by affinity chromatography on agarose-linked egg-yolk lipoprotein. Biochim Biophys Acta 351(1):155–171PubMedCrossRef Takahashi T, Sugahara T, Ohsaka A (1974) Purification of Clostridium perfringens phospholipase C (α- toxin) by affinity chromatography on agarose-linked egg-yolk lipoprotein. Biochim Biophys Acta 351(1):155–171PubMedCrossRef
go back to reference Titball RW, Hunter S, Martin KL, Morris BC, Shuttleworth AD, Rubidge T et al (1989) Molecular cloning and nucleotide sequence of the alpha-toxin (phospholipase C) of Clostridium perfringens. Infect Immun 57(2):367–376PubMedPubMedCentralCrossRef Titball RW, Hunter S, Martin KL, Morris BC, Shuttleworth AD, Rubidge T et al (1989) Molecular cloning and nucleotide sequence of the alpha-toxin (phospholipase C) of Clostridium perfringens. Infect Immun 57(2):367–376PubMedPubMedCentralCrossRef
go back to reference Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850PubMedCrossRef Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850PubMedCrossRef
go back to reference Tweten RK (2001) Clostridium perfringens beta toxin and Clostridium septicum alpha toxin: them mechanisms and possible role in pathogenesis. Vet Microbiol 82(1):1–9PubMedCrossRef Tweten RK (2001) Clostridium perfringens beta toxin and Clostridium septicum alpha toxin: them mechanisms and possible role in pathogenesis. Vet Microbiol 82(1):1–9PubMedCrossRef
go back to reference Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38(suppl_2):W469–WW73PubMedPubMedCentralCrossRef Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38(suppl_2):W469–WW73PubMedPubMedCentralCrossRef
go back to reference Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl_2):W407–WW10PubMedPubMedCentralCrossRef Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl_2):W407–WW10PubMedPubMedCentralCrossRef
go back to reference Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7 Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7
go back to reference Zhang Y (2009) ITASSER: fully automated protein structure prediction in CASP8. PROTEINS 77(S9):100–13 Zhang Y (2009) ITASSER: fully automated protein structure prediction in CASP8. PROTEINS 77(S9):100–13
Metadata
Title
In silico analysis of a chimeric fusion protein as a new vaccine candidate against Clostridium perfringens type A and Clostridium septicum alpha toxins
Authors
Ali Haghroosta
Hossein Goudarzi
Ebrahim Faghihloo
Zohreh Ghalavand
Mohammad Mahdi Ranjbar
Reza Pilehchian Langroudi
Publication date
01-10-2020
Publisher
Springer London
Keyword
Clostridium
Published in
Comparative Clinical Pathology / Issue 5/2020
Print ISSN: 1618-5641
Electronic ISSN: 1618-565X
DOI
https://doi.org/10.1007/s00580-020-03136-6

Other articles of this Issue 5/2020

Comparative Clinical Pathology 5/2020 Go to the issue