Skip to main content
Top
Published in: Journal of Neurology 8/2013

01-08-2013 | Original Communication

Clinical phenotype, muscle MRI and muscle pathology of LGMD1F

Authors: Enrico Peterle, Marina Fanin, Claudio Semplicini, Juan Jesus Vilchez Padilla, Vincenzo Nigro, Corrado Angelini

Published in: Journal of Neurology | Issue 8/2013

Login to get access

Abstract

Of the seven autosomal dominant genetically distinct forms of LGMD so far described, in only four the causative gene has been identified (LGMD1A-1D). We describe clinical, histopathological and muscle MRI features of a large Italo-Spanish kindred with LGMD1F presenting proximal-limb and axial muscle weakness. We obtained complete clinical data and graded the progression of the disease in 29 patients. Muscle MRI was performed in seven patients. Three muscle biopsies from two patients were investigated. Patients with age at onset in the early teens, had a more severe phenotype with a rapid disease course; adult onset patients presented a slow course. Muscle MRI showed prominent atrophy of lower limb muscles, involving especially the vastus lateralis. Widening the patients population resulted in the identification of previously unreported features, including dysphagia, arachnodactyly and respiratory insufficiency. Muscle biopsies showed diffuse fibre atrophy, which evolved with time, chronic myopathic changes, basophilic cytoplasmic areas, autophagosomes and accumulation of myofibrillar and cytoskeletal proteins. The LGMD1F is characterized by a selective involvement of limb muscles with respiratory impairment in advanced stages, and by different degrees of clinical progression. Novel clinical features emerged from the investigation of additional patients.
Literature
1.
go back to reference Gamez J, Navarro C, Andreu AL et al (2001) Autosomal dominant limb-girdle muscular dystrophy: a large kindred with evidence for anticipation. Neurology 56:450–454PubMedCrossRef Gamez J, Navarro C, Andreu AL et al (2001) Autosomal dominant limb-girdle muscular dystrophy: a large kindred with evidence for anticipation. Neurology 56:450–454PubMedCrossRef
2.
go back to reference Palenzuela L, Andreu AL, Gamez J et al (2003) A novel autosomal dominant limb-girdle muscular dystrophy (LGMD 1F) maps to 7q32.1-32.2. Neurology 61:404–406PubMedCrossRef Palenzuela L, Andreu AL, Gamez J et al (2003) A novel autosomal dominant limb-girdle muscular dystrophy (LGMD 1F) maps to 7q32.1-32.2. Neurology 61:404–406PubMedCrossRef
3.
go back to reference Dubowitz V, Sewry CA (2007) In. Muscle biopsy: a practical approach , 3rd edn. Saunders Elsevier, Philadelphia Dubowitz V, Sewry CA (2007) In. Muscle biopsy: a practical approach , 3rd edn. Saunders Elsevier, Philadelphia
4.
go back to reference Stramare R, Beltrame V, Dal Borgo R et al (2010) MRI in the assessment of muscular pathology: a comparison between limb-girdle muscular dystrophies, hyaline body myopathies and myotonic dystrophies. Radiol Med 115:585–599PubMedCrossRef Stramare R, Beltrame V, Dal Borgo R et al (2010) MRI in the assessment of muscular pathology: a comparison between limb-girdle muscular dystrophies, hyaline body myopathies and myotonic dystrophies. Radiol Med 115:585–599PubMedCrossRef
5.
go back to reference Starling A, Kok F, Passos-Bueno MR, Vainzof M, Zatz M (2004) A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21. Eur J Hum Genet 12:1033–1040PubMedCrossRef Starling A, Kok F, Passos-Bueno MR, Vainzof M, Zatz M (2004) A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21. Eur J Hum Genet 12:1033–1040PubMedCrossRef
6.
go back to reference Hauser MA, Conde CB, Kowaljow V et al (2002) Myotilin mutation found in second pedigree with LGMD1A. Am J Hum Genet 71:1428–1432PubMedCrossRef Hauser MA, Conde CB, Kowaljow V et al (2002) Myotilin mutation found in second pedigree with LGMD1A. Am J Hum Genet 71:1428–1432PubMedCrossRef
7.
go back to reference Van der Kooi AJ, van Meegen M, Ledderhof TM, McNally EM, de Visser M, Bolhuis PA (1997) Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome 1q11-21. Am J Hum Genet 60:891–895PubMed Van der Kooi AJ, van Meegen M, Ledderhof TM, McNally EM, de Visser M, Bolhuis PA (1997) Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome 1q11-21. Am J Hum Genet 60:891–895PubMed
8.
9.
go back to reference Harms MB, Sommerville RB, Allred P et al (2012) Exome sequencing eveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol 71:407–416PubMedCrossRef Harms MB, Sommerville RB, Allred P et al (2012) Exome sequencing eveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol 71:407–416PubMedCrossRef
10.
go back to reference Sarparanta J, Jonson PH, Golzio C et al (2012) Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 44:450–455PubMedCrossRef Sarparanta J, Jonson PH, Golzio C et al (2012) Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 44:450–455PubMedCrossRef
11.
go back to reference Hackman P, Sandell S, Sarparanta J et al (2011) Four new Finnish families with LGMD1D; refinement of the clinical phenotype and the linked 7q36 locus. Neuromusc Disord 21:338–344PubMedCrossRef Hackman P, Sandell S, Sarparanta J et al (2011) Four new Finnish families with LGMD1D; refinement of the clinical phenotype and the linked 7q36 locus. Neuromusc Disord 21:338–344PubMedCrossRef
12.
go back to reference Bisceglia L, Zoccolella S, Torraco A et al (2010) A new locus on 3p23-p25 for an autosomal-dominant limb-girdle muscular dystrophy, LGMD1H. Eur J Hum Genet 18:636–641PubMedCrossRef Bisceglia L, Zoccolella S, Torraco A et al (2010) A new locus on 3p23-p25 for an autosomal-dominant limb-girdle muscular dystrophy, LGMD1H. Eur J Hum Genet 18:636–641PubMedCrossRef
13.
go back to reference Torella A, Fanin M, Mutarelli M, et al (2013) Next-generation sequencing identifies Transportin 3 as the causative gene for LGMD1F. PLoS One (in press) Torella A, Fanin M, Mutarelli M, et al (2013) Next-generation sequencing identifies Transportin 3 as the causative gene for LGMD1F. PLoS One (in press)
Metadata
Title
Clinical phenotype, muscle MRI and muscle pathology of LGMD1F
Authors
Enrico Peterle
Marina Fanin
Claudio Semplicini
Juan Jesus Vilchez Padilla
Vincenzo Nigro
Corrado Angelini
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 8/2013
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-013-6931-1

Other articles of this Issue 8/2013

Journal of Neurology 8/2013 Go to the issue