Skip to main content
Top
Published in: Clinical Pharmacokinetics 13/2003

01-11-2003 | Review Article

Clinical Pharmacokinetics of Atorvastatin

Author: Professor Hans Lennernäs

Published in: Clinical Pharmacokinetics | Issue 13/2003

Login to get access

Abstract

Hypercholesterolaemia is a risk factor for the development of atherosclerotic disease. Atorvastatin lowers plasma low-density lipoprotein (LDL) cholesterol levels by inhibition of HMG-CoA reductase. The mean dose-response relationship has been shown to be log-linear for atorvastatin, but plasma concentrations of atorvastatin acid and its metabolites do not correlate with LDL-cholesterol reduction at a given dose.
The clinical dosage range for atorvastatin is 10–80 mg/day, and it is given in the acid form. Atorvastatin acid is highly soluble and permeable, and the drug is completely absorbed after oral administration. However, atorvastatin acid is subject to extensive first-pass metabolism in the gut wall as well as in the liver, as oral bioavailability is 14%. The volume of distribution of atorvastatin acid is 381L, and plasma protein binding exceeds 98%. Atorvastatin acid is extensively metabolised in both the gut and liver by oxidation, lactonisation and glucuronidation, and the metabolites are eliminated by biliary secretion and direct secretion from blood to the intestine. In vitro, atorvastatin acid is a substrate for P-glycoprotein, organic anion-transporting polypeptide (OATP) C and H+-monocarboxylic acid cotransporter. The total plasma clearance of atorvastatin acid is 625 mL/min and the half-life is about 7 hours. The renal route is of minor importance (<1%) for the elimination of atorvastatin acid. In vivo, cytochrome P450 (CYP) 3A4 is responsible for the formation of two active metabolites from the acid and the lactone forms of atorvastatin. Atorvastatin acid and its metabolites undergo glucuronidation mediated by uridinediphosphoglucuronyltransferases 1A1 and 1A3.
Atorvastatin can be given either in the morning or in the evening. Food decreases the absorption rate of atorvastatin acid after oral administration, as indicated by decreased peak concentration and increased time to peak concentration. Women appear to have a slightly lower plasma exposure to atorvastatin for a given dose.
Atorvastatin is subject to metabolism by CYP3A4 and cellular membrane transport by OATP C and P-glycoprotein, and drug-drug interactions with potent inhibitors of these systems, such as itraconazole, nelfinavir, ritonavir, cyclosporin, fibrates, erythromycin and grapefruit juice, have been demonstrated. An interaction with gemfibrozil seems to be mediated by inhibition of glucuronidation. A few case studies have reported rhabdomyolysis when the pharmacokinetics of atorvastatin have been affected by interacting drugs. Atorvastatin increases the bioavailability of digoxin, most probably by inhibition of P-glycoprotein, but does not affect the pharmacokinetics of ritonavir, nelfinavir or terfenadine.
Literature
1.
go back to reference Superko HR, Krauss MR. Coronary artery disease regression: convincing evidence for the benefit of aggressive lipoprotein management. Circulation 1994; 90: 1056–69PubMedCrossRef Superko HR, Krauss MR. Coronary artery disease regression: convincing evidence for the benefit of aggressive lipoprotein management. Circulation 1994; 90: 1056–69PubMedCrossRef
2.
go back to reference Levine GN, Keaney Jr JF, Vita JA. Cholesterol reduction in cardiovascular disease: clinical benefits and possible mechanisms. N Engl J Med 1995; 332: 512–21PubMedCrossRef Levine GN, Keaney Jr JF, Vita JA. Cholesterol reduction in cardiovascular disease: clinical benefits and possible mechanisms. N Engl J Med 1995; 332: 512–21PubMedCrossRef
3.
go back to reference Gotto AM. Lipid lowering, regression, and coronary events: a review of the interdisciplinary council on lipids and cardiovascular risk intervention, Seventh Council meeting. Circulation 1995; 92: 647–56CrossRef Gotto AM. Lipid lowering, regression, and coronary events: a review of the interdisciplinary council on lipids and cardiovascular risk intervention, Seventh Council meeting. Circulation 1995; 92: 647–56CrossRef
4.
go back to reference Brown BG, Zhao XQ, Sacco DE, et al. Lipid lowering and plaque regression: new insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 1993; 87: 1781–91PubMedCrossRef Brown BG, Zhao XQ, Sacco DE, et al. Lipid lowering and plaque regression: new insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 1993; 87: 1781–91PubMedCrossRef
5.
go back to reference Pedersen TR, Kjekshus J, Berg K, et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9CrossRef Pedersen TR, Kjekshus J, Berg K, et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9CrossRef
6.
go back to reference Shepherd J, Cobbe SM, Ford I, et al. West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–7PubMedCrossRef Shepherd J, Cobbe SM, Ford I, et al. West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–7PubMedCrossRef
7.
go back to reference Sacks FM, Pfeffer MA, Lemeul AM, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9PubMedCrossRef Sacks FM, Pfeffer MA, Lemeul AM, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9PubMedCrossRef
8.
go back to reference Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279: 1615–22PubMedCrossRef Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279: 1615–22PubMedCrossRef
9.
go back to reference Vaughan CJ, Gotto Jr AM, Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 1999; 35: 1–10CrossRef Vaughan CJ, Gotto Jr AM, Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 1999; 35: 1–10CrossRef
10.
go back to reference Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar?. Pharmacol Ther 1998; 80: 1–34PubMedCrossRef Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar?. Pharmacol Ther 1998; 80: 1–34PubMedCrossRef
11.
go back to reference Corsini A, Bellosta S, Baetta R, et al. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 1999; 84: 413–28PubMedCrossRef Corsini A, Bellosta S, Baetta R, et al. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 1999; 84: 413–28PubMedCrossRef
12.
go back to reference Ni W, Egashira K, Kataoka C, et al. Antiinflammatory and antiarteriosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res 2001 Aug 31; 89(5): 415–21PubMedCrossRef Ni W, Egashira K, Kataoka C, et al. Antiinflammatory and antiarteriosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res 2001 Aug 31; 89(5): 415–21PubMedCrossRef
13.
go back to reference Cilla Jr DD, Whitfield LR, Gibson DM, et al. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvas-tatin, an inhibitor of HMG-CoA reductase, in healthy subjects. Clin Pharmacol Ther 1996 Dec; 60(6): 687–95PubMedCrossRef Cilla Jr DD, Whitfield LR, Gibson DM, et al. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvas-tatin, an inhibitor of HMG-CoA reductase, in healthy subjects. Clin Pharmacol Ther 1996 Dec; 60(6): 687–95PubMedCrossRef
14.
go back to reference Lindahl A, Ungell A-L, Persson B, et al. Surface activity of fluvastatin and concentration dependent intestinal permeability in the rat. Pharm Res 1999; 16: 97–102PubMedCrossRef Lindahl A, Ungell A-L, Persson B, et al. Surface activity of fluvastatin and concentration dependent intestinal permeability in the rat. Pharm Res 1999; 16: 97–102PubMedCrossRef
15.
go back to reference Kantola T, Krivistö KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 64: 58–65PubMedCrossRef Kantola T, Krivistö KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 64: 58–65PubMedCrossRef
16.
go back to reference Kearney AS, Crawford LF, Metha SC, et al. The interconversion kinetics, equilibrium and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm Res 1993; 10: 1461–5PubMedCrossRef Kearney AS, Crawford LF, Metha SC, et al. The interconversion kinetics, equilibrium and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm Res 1993; 10: 1461–5PubMedCrossRef
17.
go back to reference Ishigami M, Honda T, Takasaki W, et al. A comparison of the effects of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors on the CYP3A4-dependent oxidation of mexazolam in vitro. Drug Metab Dispos 2001; 29: 282–8PubMed Ishigami M, Honda T, Takasaki W, et al. A comparison of the effects of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors on the CYP3A4-dependent oxidation of mexazolam in vitro. Drug Metab Dispos 2001; 29: 282–8PubMed
18.
go back to reference Jacobsen W, Kuhn B, Soldner A, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 2000; 28(11): 1369–78PubMed Jacobsen W, Kuhn B, Soldner A, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 2000; 28(11): 1369–78PubMed
19.
go back to reference Prueksaritanont T, Subramanian R, Fang X, et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos 2002; 30: 505–12PubMedCrossRef Prueksaritanont T, Subramanian R, Fang X, et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos 2002; 30: 505–12PubMedCrossRef
20.
go back to reference Posvar EL, Radulovic LL, Cilla DD, et al. Tolerance and pharmacokinetics of single-dose atorvastatin, a potent inhibitor of HMG-CoA reductase, in healthy subjects. J Clin Pharmacol 1996; 36: 728–31PubMedCrossRef Posvar EL, Radulovic LL, Cilla DD, et al. Tolerance and pharmacokinetics of single-dose atorvastatin, a potent inhibitor of HMG-CoA reductase, in healthy subjects. J Clin Pharmacol 1996; 36: 728–31PubMedCrossRef
21.
go back to reference Radulovic LL, Cilia DD, Posvar EL, et al. Effect of food on the bioavailability of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 1995; 35: 990–4PubMedCrossRef Radulovic LL, Cilia DD, Posvar EL, et al. Effect of food on the bioavailability of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 1995; 35: 990–4PubMedCrossRef
22.
go back to reference Shum YY, Huang N, Walter G, et al. Development, validation, and interlaboratory comparison of an HMG-CoA reductase inhibition assay for quantitation of atorvastatin in plasma matrices. Ther Drug Monit 1998; 20: 41–9PubMedCrossRef Shum YY, Huang N, Walter G, et al. Development, validation, and interlaboratory comparison of an HMG-CoA reductase inhibition assay for quantitation of atorvastatin in plasma matrices. Ther Drug Monit 1998; 20: 41–9PubMedCrossRef
23.
go back to reference Gibson DM, Stern RH, Abel RB, et al. Absolute bioavailability of atorvastatin in man. Pharm Res 1997; 14: S253 Gibson DM, Stern RH, Abel RB, et al. Absolute bioavailability of atorvastatin in man. Pharm Res 1997; 14: S253
24.
go back to reference Jemal M, Ouyang Z, Chen BC, et al. Quantitation of the acid and lactone forms of atorvastatin and its biotransformation products in human serum by high-performance liquid chromatography with electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 1999; 13: 1003–15PubMedCrossRef Jemal M, Ouyang Z, Chen BC, et al. Quantitation of the acid and lactone forms of atorvastatin and its biotransformation products in human serum by high-performance liquid chromatography with electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 1999; 13: 1003–15PubMedCrossRef
25.
go back to reference Lennernäs H, Fager G. Clinical pharmacokinetics and pharmacodynamics of HMG-CoA reductase inhibitors: similarities and dissimilarities. Clin Pharmacokinet 1997; 35: 403–25CrossRef Lennernäs H, Fager G. Clinical pharmacokinetics and pharmacodynamics of HMG-CoA reductase inhibitors: similarities and dissimilarities. Clin Pharmacokinet 1997; 35: 403–25CrossRef
26.
go back to reference Malhotra HS, Goa KL. Atorvastatin: an updated review of its pharmacological properties and use in dyslipidaemia. Drugs 2001; 61: 1835–81PubMedCrossRef Malhotra HS, Goa KL. Atorvastatin: an updated review of its pharmacological properties and use in dyslipidaemia. Drugs 2001; 61: 1835–81PubMedCrossRef
28.
go back to reference Nawrocki JW, Weiss SR, Davidson MH, et al. Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler Thromb Vasc Biol 1995 May; 15(5): 678–82PubMedCrossRef Nawrocki JW, Weiss SR, Davidson MH, et al. Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler Thromb Vasc Biol 1995 May; 15(5): 678–82PubMedCrossRef
29.
go back to reference Stern RH, Gibson DM, Whitfield LR. Cimetidine does not alter atorvastatin pharmacokinetics or LDL-cholesterol reduction. Eur J Clin Pharmacol 1998; 53(6): 475–8PubMedCrossRef Stern RH, Gibson DM, Whitfield LR. Cimetidine does not alter atorvastatin pharmacokinetics or LDL-cholesterol reduction. Eur J Clin Pharmacol 1998; 53(6): 475–8PubMedCrossRef
30.
go back to reference Lea AP, McTavish D. Atorvastatin: a review of its pharmacology and therapeutic potential in the management of hyper-lipidaemias. Drugs 1997 May; 53(5): 828–47PubMedCrossRef Lea AP, McTavish D. Atorvastatin: a review of its pharmacology and therapeutic potential in the management of hyper-lipidaemias. Drugs 1997 May; 53(5): 828–47PubMedCrossRef
31.
go back to reference Stern RH, Yang BB, Hounslow NJ, et al. Pharmacodynamics and pharmacokinetic-pharmacodynamic relationships of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 2000 Jun; 40(6): 616–23PubMedCrossRef Stern RH, Yang BB, Hounslow NJ, et al. Pharmacodynamics and pharmacokinetic-pharmacodynamic relationships of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 2000 Jun; 40(6): 616–23PubMedCrossRef
32.
go back to reference Guerin M, Lassel TS, Le Goff W, et al. Action of atorvastatin in combined hyperlipidemia: preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles. Arterioscler Thromb Vasc Biol 2000 Jan; 20(1): 189–97PubMedCrossRef Guerin M, Lassel TS, Le Goff W, et al. Action of atorvastatin in combined hyperlipidemia: preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles. Arterioscler Thromb Vasc Biol 2000 Jan; 20(1): 189–97PubMedCrossRef
33.
go back to reference Joukhadar C, Klein N, Prinz M, et al. Similar effects of atorvastatin, simvastatin and pravastatin on thrombogenic and inflammatory parameters in patients with hypercholesterolemia. Thromb Haemost 2001 Jan; 85(1): 47–51PubMed Joukhadar C, Klein N, Prinz M, et al. Similar effects of atorvastatin, simvastatin and pravastatin on thrombogenic and inflammatory parameters in patients with hypercholesterolemia. Thromb Haemost 2001 Jan; 85(1): 47–51PubMed
34.
go back to reference Amidon GL, Lennernäs H, Shah V, et al. Theoretical considerations in the correlation of drug product dissolution and in vivo bioavailability: a biopharmaceutical drug classification. Pharm Res 1995; 12: 413–20PubMedCrossRef Amidon GL, Lennernäs H, Shah V, et al. Theoretical considerations in the correlation of drug product dissolution and in vivo bioavailability: a biopharmaceutical drug classification. Pharm Res 1995; 12: 413–20PubMedCrossRef
35.
go back to reference Wu X, Whitfield LR, Stewart BH. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and proton-monocarboxylic acid co-transporter. Pharm Res 2000; 17: 209–15PubMedCrossRef Wu X, Whitfield LR, Stewart BH. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and proton-monocarboxylic acid co-transporter. Pharm Res 2000; 17: 209–15PubMedCrossRef
36.
go back to reference Benet LZ, Cummins CL. The drug efflux-metabolism alliance: biochemical aspects. Adv Drug Deliv Rev 2001 Oct 1; 50 Suppl. 1: S3–S11PubMedCrossRef Benet LZ, Cummins CL. The drug efflux-metabolism alliance: biochemical aspects. Adv Drug Deliv Rev 2001 Oct 1; 50 Suppl. 1: S3–S11PubMedCrossRef
37.
go back to reference Igel M, Sudhop T, von Bergmann K. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur J Clin Pharmacol 2001 Aug; 57(5): 357–64PubMedCrossRef Igel M, Sudhop T, von Bergmann K. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur J Clin Pharmacol 2001 Aug; 57(5): 357–64PubMedCrossRef
38.
go back to reference Boyd RA, Stern RH, Stewart BH, et al. Atorvastatin coadmin-istration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol 2000 Jan; 40(1): 91–8PubMedCrossRef Boyd RA, Stern RH, Stewart BH, et al. Atorvastatin coadmin-istration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol 2000 Jan; 40(1): 91–8PubMedCrossRef
39.
go back to reference Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997 Dec; 283(3): 1552–62PubMed Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997 Dec; 283(3): 1552–62PubMed
40.
go back to reference Lennernäs H. Human jejunal effective permeability and its correlation to preclinical drug absorption models. J Pharm Pharmacol 1997; 49: 627–38PubMedCrossRef Lennernäs H. Human jejunal effective permeability and its correlation to preclinical drug absorption models. J Pharm Pharmacol 1997; 49: 627–38PubMedCrossRef
41.
go back to reference Winiwarter S, Bonham N, Hallberg A, et al. Correlation of human jejunal permeability (in vivo) with experimentally and theoretically derived parameters: a multivariate data analysis approach. J Med Chem 1999; 41: 4939–49CrossRef Winiwarter S, Bonham N, Hallberg A, et al. Correlation of human jejunal permeability (in vivo) with experimentally and theoretically derived parameters: a multivariate data analysis approach. J Med Chem 1999; 41: 4939–49CrossRef
42.
go back to reference Lindahl A, Sandström R, Ungell A-L, et al. Jejunal permeability and hepatic extraction of fluvastatin in humans. J Clin Pharm Ther 1996; 60: 493–503CrossRef Lindahl A, Sandström R, Ungell A-L, et al. Jejunal permeability and hepatic extraction of fluvastatin in humans. J Clin Pharm Ther 1996; 60: 493–503CrossRef
43.
go back to reference Stern RH, Yang BB, Horton M, et al. Renal dysfunction does not alter the pharmacokinetics or LDL-cholesterol reduction of atorvastatin. J Clin Pharmacol 1997 Sep; 37(9): 816–9PubMedCrossRef Stern RH, Yang BB, Horton M, et al. Renal dysfunction does not alter the pharmacokinetics or LDL-cholesterol reduction of atorvastatin. J Clin Pharmacol 1997 Sep; 37(9): 816–9PubMedCrossRef
44.
go back to reference Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism overemphasized?. Pharmacol Rev 1999 Jun; 51(2): 135–58PubMed Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism overemphasized?. Pharmacol Rev 1999 Jun; 51(2): 135–58PubMed
45.
go back to reference Black AE, Hayes RN, Roth BD, et al. Metabolism and excretion of atorvastatin in rats and dogs. Drug Metab Dispos 1999 Aug; 27(8): 916–23PubMed Black AE, Hayes RN, Roth BD, et al. Metabolism and excretion of atorvastatin in rats and dogs. Drug Metab Dispos 1999 Aug; 27(8): 916–23PubMed
46.
go back to reference Lennernäs H, Regårdh CG. Dose-dependent intestinal absorption and significant intestinal excretion (exsorption) of the beta-blocker pafenolol in the rat. Pharm Res 1993; 5: 727–31CrossRef Lennernäs H, Regårdh CG. Dose-dependent intestinal absorption and significant intestinal excretion (exsorption) of the beta-blocker pafenolol in the rat. Pharm Res 1993; 5: 727–31CrossRef
47.
go back to reference Gramatte T, Oertel R. Intestinal secretion of intravenous talinolol is inhibited by luminal R-verapamil. Clin Pharmacol Ther 1999 Sep; 66(3): 239–45PubMedCrossRef Gramatte T, Oertel R. Intestinal secretion of intravenous talinolol is inhibited by luminal R-verapamil. Clin Pharmacol Ther 1999 Sep; 66(3): 239–45PubMedCrossRef
48.
go back to reference Fagerholm U, Johansson M, Lennernäs H. The correlation between rat and human small intestinal permeability to drugs with different physico-chemical properties. Pharm Res 1996; 13: 1335–41CrossRef Fagerholm U, Johansson M, Lennernäs H. The correlation between rat and human small intestinal permeability to drugs with different physico-chemical properties. Pharm Res 1996; 13: 1335–41CrossRef
49.
go back to reference Chiou WL, Jeong HY, Chung SM, et al. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res 2000 Feb; 17(2): 135–40PubMedCrossRef Chiou WL, Jeong HY, Chung SM, et al. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res 2000 Feb; 17(2): 135–40PubMedCrossRef
50.
go back to reference Fojo AT, Ueda K, Slamon DJ, et al. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A 1987; 84(1): 265–9PubMedPubMedCentralCrossRef Fojo AT, Ueda K, Slamon DJ, et al. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A 1987; 84(1): 265–9PubMedPubMedCentralCrossRef
51.
go back to reference Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Ther 2002; 301: 1042–51CrossRef Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Ther 2002; 301: 1042–51CrossRef
52.
go back to reference Strassburg CP, Kneip S, Topp J, et al. Polymorphic gene regulation and interindividual variation fo UDP-glucuronosyl-transferase activity in human small intestine. J Biol Chem 2000; 275: 36164–71PubMedCrossRef Strassburg CP, Kneip S, Topp J, et al. Polymorphic gene regulation and interindividual variation fo UDP-glucuronosyl-transferase activity in human small intestine. J Biol Chem 2000; 275: 36164–71PubMedCrossRef
53.
go back to reference Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995; 58(5): 492–7PubMedCrossRef Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995; 58(5): 492–7PubMedCrossRef
54.
go back to reference Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60(1): 14–24PubMedCrossRef Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60(1): 14–24PubMedCrossRef
55.
go back to reference Regardh CG, Edgar B, Olsson R, et al. Pharmacokinetics of felodipine in patients with liver disease. Eur J Clin Pharmacol 1989; 36(5): 473–9PubMedCrossRef Regardh CG, Edgar B, Olsson R, et al. Pharmacokinetics of felodipine in patients with liver disease. Eur J Clin Pharmacol 1989; 36(5): 473–9PubMedCrossRef
56.
go back to reference Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24(4): 796–801PubMedCrossRef Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24(4): 796–801PubMedCrossRef
57.
go back to reference Sandström R, Knutson L, Knutson T, et al. The effect of ketoconazole on jejunal permeability and CYP 3A4 metabolism of R/S-verapamil in humans. Br J Clin Pharmacol 1999; 48: 180–9PubMedPubMedCentralCrossRef Sandström R, Knutson L, Knutson T, et al. The effect of ketoconazole on jejunal permeability and CYP 3A4 metabolism of R/S-verapamil in humans. Br J Clin Pharmacol 1999; 48: 180–9PubMedPubMedCentralCrossRef
58.
go back to reference Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 1999 Aug; 66(2): 118–27PubMedCrossRef Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 1999 Aug; 66(2): 118–27PubMedCrossRef
59.
go back to reference Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000 Oct; 68(4): 391–400PubMedCrossRef Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000 Oct; 68(4): 391–400PubMedCrossRef
60.
go back to reference Le Couteur DG, Martin PF, Pond SM, Bracs P, Black A, Hayes R, Woolf TF, Stern R. Metabolism and excretion of 14C atorvastatin in patients with T-tube drainage [abstract]. Proc Aust Soc Clin Exp Pharmacol Toxicol 1996; 3: 153 Le Couteur DG, Martin PF, Pond SM, Bracs P, Black A, Hayes R, Woolf TF, Stern R. Metabolism and excretion of 14C atorvastatin in patients with T-tube drainage [abstract]. Proc Aust Soc Clin Exp Pharmacol Toxicol 1996; 3: 153
61.
go back to reference Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol 2002; 58: 335–40 Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol 2002; 58: 335–40
62.
go back to reference Rolan PE. Plasma protein binding displacement interactions -why are they still regarded as clinically important?. Br J Clin Pharmacol 1994; 37: 125–8PubMedPubMedCentralCrossRef Rolan PE. Plasma protein binding displacement interactions -why are they still regarded as clinically important?. Br J Clin Pharmacol 1994; 37: 125–8PubMedPubMedCentralCrossRef
63.
64.
go back to reference Yang BB, Smithers JA, Stern RH, Sedman AJ, Olsen SC. Pharmacokinetics and dose proportionality of atorvastatin and its active metabolites [abstract]. Pharm Res 1996; 13 Suppl 1: S437 Yang BB, Smithers JA, Stern RH, Sedman AJ, Olsen SC. Pharmacokinetics and dose proportionality of atorvastatin and its active metabolites [abstract]. Pharm Res 1996; 13 Suppl 1: S437
65.
go back to reference Ozdemir V, Kalowa W, Tang BK, et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000 Jul; 10(5): 373–88PubMedCrossRef Ozdemir V, Kalowa W, Tang BK, et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000 Jul; 10(5): 373–88PubMedCrossRef
66.
go back to reference Prueksaritanont T, Tang C, Qiu Y, et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos 2002; 30: 1280–7PubMedCrossRef Prueksaritanont T, Tang C, Qiu Y, et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos 2002; 30: 1280–7PubMedCrossRef
67.
go back to reference Hsiang B, Zhut Y, Wang Z, et al. A novel human hepatic organic anion transporting polypeptide (OATP 2). J Biol Chem 1999; 274: 37161–8PubMedCrossRef Hsiang B, Zhut Y, Wang Z, et al. A novel human hepatic organic anion transporting polypeptide (OATP 2). J Biol Chem 1999; 274: 37161–8PubMedCrossRef
68.
go back to reference Nakai D, Nakagomi R, Furuta Y, et al. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharm Exp Pharmacol 2001; 297: 861–7 Nakai D, Nakagomi R, Furuta Y, et al. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharm Exp Pharmacol 2001; 297: 861–7
69.
go back to reference Brown CDA, Windass A, Bleasby K, et al. Rosuvastatin is a high affinity substrate of hepatic organic anion transport OATP-C [abstract]. Artherosclerosis 2001; 2 Suppl. 2: 90CrossRef Brown CDA, Windass A, Bleasby K, et al. Rosuvastatin is a high affinity substrate of hepatic organic anion transport OATP-C [abstract]. Artherosclerosis 2001; 2 Suppl. 2: 90CrossRef
70.
go back to reference Gibson DM, Bron NJ, Richens A, et al. Effect of age and gender on pharmacokinetics of atorvastatin in humans. J Clin Pharmacol 1996; 36: 242–6PubMedCrossRef Gibson DM, Bron NJ, Richens A, et al. Effect of age and gender on pharmacokinetics of atorvastatin in humans. J Clin Pharmacol 1996; 36: 242–6PubMedCrossRef
71.
go back to reference Cummins CL, Wu CH, Benet LZ. Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein. Clin Pharm Ther 2002; 72: 474–89CrossRef Cummins CL, Wu CH, Benet LZ. Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein. Clin Pharm Ther 2002; 72: 474–89CrossRef
72.
go back to reference Cilla Jr DD, Gibson DM, Whitfield LR, et al. Pharmacodynamic effects and pharmacokinetics of atorvastatin after administration to normocholesterolemic subjects in the morning and evening. J Clin Pharmacol 1996 Jul; 36(7): 604–9PubMedCrossRef Cilla Jr DD, Gibson DM, Whitfield LR, et al. Pharmacodynamic effects and pharmacokinetics of atorvastatin after administration to normocholesterolemic subjects in the morning and evening. J Clin Pharmacol 1996 Jul; 36(7): 604–9PubMedCrossRef
73.
go back to reference Lins RL, Matthys KE, Verpooten GA, et al. Pharmacokinetics of atorvastatin and its metabolites after single and multiple dosing in hypercholesterolaemic haemodialysis patients. Nephrol Dial Transplant 2003; 18(5): 967–76PubMedCrossRef Lins RL, Matthys KE, Verpooten GA, et al. Pharmacokinetics of atorvastatin and its metabolites after single and multiple dosing in hypercholesterolaemic haemodialysis patients. Nephrol Dial Transplant 2003; 18(5): 967–76PubMedCrossRef
74.
go back to reference Dowling TC, Briglia AE, Fink JC, et al. Characterisation of hepatic cytochrome P450 3A activity in patients with end stage renal disease. Clin Pharmacol Ther 2003; 73: 427–34PubMedCrossRef Dowling TC, Briglia AE, Fink JC, et al. Characterisation of hepatic cytochrome P450 3A activity in patients with end stage renal disease. Clin Pharmacol Ther 2003; 73: 427–34PubMedCrossRef
75.
go back to reference Whitfield LR, Stern RH, Sedman AJ, Abel R, Gibson DM. Effect of food on the pharmacodynamics and pharmacokinetics of atorvastatin, an inhibitor of HMG-CoA reductase. Eur J Drug Metab Pharmacokinet 2000 Apr–Jun; 25(2): 97–101PubMedCrossRef Whitfield LR, Stern RH, Sedman AJ, Abel R, Gibson DM. Effect of food on the pharmacodynamics and pharmacokinetics of atorvastatin, an inhibitor of HMG-CoA reductase. Eur J Drug Metab Pharmacokinet 2000 Apr–Jun; 25(2): 97–101PubMedCrossRef
76.
go back to reference Fleisher D, Li C, Zhou Y, et al. Drug, meal and formulation interactions influencing drug absorption after oral administration: clinical implications. Clin Pharmacokinet 1999 Mar; 36(3): 233–54PubMedCrossRef Fleisher D, Li C, Zhou Y, et al. Drug, meal and formulation interactions influencing drug absorption after oral administration: clinical implications. Clin Pharmacokinet 1999 Mar; 36(3): 233–54PubMedCrossRef
77.
go back to reference Beaird SL. HMG-CoA reductase inhibitors: assessing differences in drug interactions and safety profiles. J Am Pharm Assoc 2000; 40(5): 637–44CrossRef Beaird SL. HMG-CoA reductase inhibitors: assessing differences in drug interactions and safety profiles. J Am Pharm Assoc 2000; 40(5): 637–44CrossRef
79.
go back to reference Wang E, Casciano CN, Clement RP, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res 2001 Jun; 18(6): 800–6PubMedCrossRef Wang E, Casciano CN, Clement RP, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res 2001 Jun; 18(6): 800–6PubMedCrossRef
80.
go back to reference McDonnell CG, Harte S, Os’Driscoll J, et al. The effects of concurrent atorvastatin therapy on the pharmacokinetics of intravenous midazolam. Anaesthesia 2003; 58: 899–904CrossRef McDonnell CG, Harte S, Os’Driscoll J, et al. The effects of concurrent atorvastatin therapy on the pharmacokinetics of intravenous midazolam. Anaesthesia 2003; 58: 899–904CrossRef
81.
go back to reference Omar MA, Wilson JP, Cox TS. Rhabdomyolysis and HMG-CoA reductase inhibitors. Ann Pharmacother 2001 Sep; 35(9): 1096–107PubMedCrossRef Omar MA, Wilson JP, Cox TS. Rhabdomyolysis and HMG-CoA reductase inhibitors. Ann Pharmacother 2001 Sep; 35(9): 1096–107PubMedCrossRef
82.
go back to reference Maltz HC, Balog DL, Cheigh JS. Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporine. Ann Pharmacother 1999 Nov; 33(11): 1176–9PubMedCrossRef Maltz HC, Balog DL, Cheigh JS. Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporine. Ann Pharmacother 1999 Nov; 33(11): 1176–9PubMedCrossRef
83.
go back to reference Heerey A, Barry M, Ryan M, Kelly A. The potential for drug interactions with statin therapy in Ireland. Ir J Med Sci 2000 Jul–Sep; 169(3): 176–9PubMedCrossRef Heerey A, Barry M, Ryan M, Kelly A. The potential for drug interactions with statin therapy in Ireland. Ir J Med Sci 2000 Jul–Sep; 169(3): 176–9PubMedCrossRef
84.
go back to reference McManus BM, Horley KJ, Wilson JE, et al. Prominence of coronary arterial wall lipids in human heart allografts: implications for pathogenesis of allograft arteriopathy. Am J Pathol 1995 Aug; 147(2): 293–308PubMedPubMedCentral McManus BM, Horley KJ, Wilson JE, et al. Prominence of coronary arterial wall lipids in human heart allografts: implications for pathogenesis of allograft arteriopathy. Am J Pathol 1995 Aug; 147(2): 293–308PubMedPubMedCentral
85.
go back to reference Corpier CL, Jones PH, Suki WN, et al. Rhabdomyolysis and renal injury with lovastatin use: report of two cases in cardiac transplant recipients. JAMA 1988 Jul 8; 260(2): 239–41PubMedCrossRef Corpier CL, Jones PH, Suki WN, et al. Rhabdomyolysis and renal injury with lovastatin use: report of two cases in cardiac transplant recipients. JAMA 1988 Jul 8; 260(2): 239–41PubMedCrossRef
86.
go back to reference Kusus M, Stapleton DD, Lertora JJ, et al. Rhabdomyolysis and acute renal failure in a cardiac transplant recipient due to multiple drug interactions. Am J Med Sci 2000 Dec; 320(6): 394–7PubMedCrossRef Kusus M, Stapleton DD, Lertora JJ, et al. Rhabdomyolysis and acute renal failure in a cardiac transplant recipient due to multiple drug interactions. Am J Med Sci 2000 Dec; 320(6): 394–7PubMedCrossRef
87.
go back to reference Kobashigawa JA, Moriguchi JD, Ro TK, et al. Atorvastatin for refractory hypercholesterolemia in heart transplant patients [abstract]. J Am Coll Cardiol 1998; 31 Suppl. A: 157ACrossRef Kobashigawa JA, Moriguchi JD, Ro TK, et al. Atorvastatin for refractory hypercholesterolemia in heart transplant patients [abstract]. J Am Coll Cardiol 1998; 31 Suppl. A: 157ACrossRef
88.
go back to reference Wenisch C, Krause R, Fladerer P, et al. Acute rhabdomyolysis after atorvastatin and fusidic acid therapy. Am J Med 2000 Jul; 109(1): 78PubMedCrossRef Wenisch C, Krause R, Fladerer P, et al. Acute rhabdomyolysis after atorvastatin and fusidic acid therapy. Am J Med 2000 Jul; 109(1): 78PubMedCrossRef
89.
90.
go back to reference Duell PB, Connor WE, Illingworth DR. Rhabdomyolysis after taking atorvastatin with gemfibrozil. Am J Cardiol 1998 Feb 1; 81(3): 368–9PubMedCrossRef Duell PB, Connor WE, Illingworth DR. Rhabdomyolysis after taking atorvastatin with gemfibrozil. Am J Cardiol 1998 Feb 1; 81(3): 368–9PubMedCrossRef
91.
go back to reference Lill J, Bauer LA, Horn JR, et al. Cyclosporine-drug interactions and the influence of patient age. Am J Health Syst Pharm 2000 Sep 1; 57(17): 1579–84PubMed Lill J, Bauer LA, Horn JR, et al. Cyclosporine-drug interactions and the influence of patient age. Am J Health Syst Pharm 2000 Sep 1; 57(17): 1579–84PubMed
92.
go back to reference Hsyu PH, Schultz-Smith MD, Lillibridge JH, et al. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001 Dec; 45(12): 3445–50PubMedPubMedCentralCrossRef Hsyu PH, Schultz-Smith MD, Lillibridge JH, et al. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001 Dec; 45(12): 3445–50PubMedPubMedCentralCrossRef
93.
go back to reference Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG study A5047. AIDS 2002; 16: 569–77PubMedCrossRef Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG study A5047. AIDS 2002; 16: 569–77PubMedCrossRef
94.
go back to reference Acosta EP. Pharmacokinetic enhancement of protease inhibitors. J Acquir Immune Defic Syndr 2002; 29: S11–8PubMedCrossRef Acosta EP. Pharmacokinetic enhancement of protease inhibitors. J Acquir Immune Defic Syndr 2002; 29: S11–8PubMedCrossRef
95.
go back to reference DiTusa L, Luzier AB. Potential interaction between troglitazone and atorvastatin. J Clin Pharm Ther 2000 Aug; 25(4): 279–82PubMedCrossRef DiTusa L, Luzier AB. Potential interaction between troglitazone and atorvastatin. J Clin Pharm Ther 2000 Aug; 25(4): 279–82PubMedCrossRef
96.
go back to reference Xie W, Yeuh MF, Radominska-Pandya A, et al. Control of steroid, heme, and cacinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci USA 2003; 100: 4150–5PubMedPubMedCentralCrossRef Xie W, Yeuh MF, Radominska-Pandya A, et al. Control of steroid, heme, and cacinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci USA 2003; 100: 4150–5PubMedPubMedCentralCrossRef
97.
go back to reference Loi CM, Stern RH, Abel R, et al. Effect of troglitazone on pharmacokinetics and pharmacodynamics of atorvastatin [abstract]. Clin Pharmacol Ther 1999; 65: 186 Loi CM, Stern RH, Abel R, et al. Effect of troglitazone on pharmacokinetics and pharmacodynamics of atorvastatin [abstract]. Clin Pharmacol Ther 1999; 65: 186
98.
go back to reference Siedlik PH, Olson SC, Yang BB, et al. Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol 1999 May; 39(5): 501–4PubMed Siedlik PH, Olson SC, Yang BB, et al. Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol 1999 May; 39(5): 501–4PubMed
99.
go back to reference Yang BB, Hounslow NJ, Sedman AJ, et al. Effects of atorvastatin, an HMG-CoA reductase inhibitor, on hepatic oxidative metabolism of antipyrine. J Clin Pharmacol 1996 Apr; 36(4): 356–60PubMedCrossRef Yang BB, Hounslow NJ, Sedman AJ, et al. Effects of atorvastatin, an HMG-CoA reductase inhibitor, on hepatic oxidative metabolism of antipyrine. J Clin Pharmacol 1996 Apr; 36(4): 356–60PubMedCrossRef
100.
go back to reference Renders L, Mayer-Kadner I, Koch C, et al. Efficacy and drug interactions of the new HMG-CoA reductase inhibitors cerivastatin and atorvastatin in CsA-treated renal transplant recipients. Nephrol Dial Transplant 2001 Jan; 16(1): 141–6PubMedCrossRef Renders L, Mayer-Kadner I, Koch C, et al. Efficacy and drug interactions of the new HMG-CoA reductase inhibitors cerivastatin and atorvastatin in CsA-treated renal transplant recipients. Nephrol Dial Transplant 2001 Jan; 16(1): 141–6PubMedCrossRef
101.
go back to reference Stern RH, Smithers JA, Olson SC. Atorvastatin does not produce a clinically significant effect on the pharmacokinetics of terfenadine. J Clin Pharmacol 1998 Aug; 38(8): 753–7PubMedCrossRef Stern RH, Smithers JA, Olson SC. Atorvastatin does not produce a clinically significant effect on the pharmacokinetics of terfenadine. J Clin Pharmacol 1998 Aug; 38(8): 753–7PubMedCrossRef
102.
go back to reference Cohen LH, van Leeuwen RE, van Thiel GC, et al. Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos 2000 Dec; 21(9): 353–64PubMedCrossRef Cohen LH, van Leeuwen RE, van Thiel GC, et al. Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos 2000 Dec; 21(9): 353–64PubMedCrossRef
103.
go back to reference Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 2001 Mar; 69(3): 114–21PubMedCrossRef Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 2001 Mar; 69(3): 114–21PubMedCrossRef
Metadata
Title
Clinical Pharmacokinetics of Atorvastatin
Author
Professor Hans Lennernäs
Publication date
01-11-2003
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 13/2003
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200342130-00005

Other articles of this Issue 13/2003

Clinical Pharmacokinetics 13/2003 Go to the issue