Skip to main content
Top
Published in: Respiratory Research 1/2022

Open Access 01-12-2022 | Climate Change | Research

The adverse effect of ambient temperature on respiratory deaths in a high population density area: the case of Malta

Authors: Shafkat Jahan, John Paul Cauchi, Charles Galdies, Kathleen England, Darren Wraith

Published in: Respiratory Research | Issue 1/2022

Login to get access

Abstract

Background

The effect of ambient temperature on respiratory mortality has been consistently observed throughout the world under different climate change scenarios. Countries experiencing greater inter–annual variability in winter temperatures (and may not be lowest winter temperatures) have greater excess winter mortality compared to countries with colder winters. This study investigates the association between temperature and respiratory deaths in Malta which has one of the highest population densities in the world with a climate that is very hot in summer and mild in winter.

Methods

Daily number of respiratory deaths (7679 deaths) and meteorological data (daily average temperature, daily average humidity) were obtained from January 1992 to December 2017. The hot and cold effects were estimated at different temperatures using distributed lag non-linear models (DLNM) with a Poisson distribution, controlling for time trend, relative humidity and holidays. The reference temperature (MMT) for the minimum response-exposure relationship was estimated and the harvesting effects of daily temperature (0–27 lag days) were investigated for daily respiratory mortality. Effects were also explored for different age groups, gender and time periods.

Results

Cooler temperatures (8–15 °C) were significantly related to higher respiratory mortality. At 8.9 °C (1st percentile), the overall effect of daily mean temperature was related to respiratory deaths (RR 2.24, 95%CI 1.10–4.54). These effects were also found for males (95%CI 1.06–7.77) and males across different age groups (Males Over 65 years: RR 4.85, 95%CI 2.02–11.63 vs Males between 16 and 64 years: RR 5.00, 95%CI 2.08–12.03) but not for females. Interestingly, colder temperatures were related to respiratory deaths in the earliest time period (1992–2000), however, no strong cold effect was observed for later periods (2000–2017). In contrast, no heat effect was observed during the study period and across other groups.

Conclusions

The higher risk for cold-related respiratory mortality observed in this study could be due to greater inter-annual variability in winter temperatures which needs further exploration after adjusting for potential physical and socio-demographic attributes. The study provides useful evidence for policymakers to improve local warning systems, adaptation, and intervention strategies to reduce the impact of cold temperatures.
Appendix
Available only for authorised users
Literature
1.
go back to reference OECD Publishing. Health at a glance: Europe 2018: state of health in the EU cycle. Organisation for Economic Co-operation and Development OECD.2018; doi: https:// doi.org/ 10.1787/ health _glance_eur-2018–9-en OECD Publishing. Health at a glance: Europe 2018: state of health in the EU cycle. Organisation for Economic Co-operation and Development OECD.2018; doi: https:// doi.org/ 10.1787/ health _glance_eur-2018–9-en
2.
go back to reference Basu R, Malig B. High ambient temperature and mortality in California: exploring the roles of age, disease, and mortality displacement. Environ Res. 2011;111(8):1286–92.PubMedCrossRef Basu R, Malig B. High ambient temperature and mortality in California: exploring the roles of age, disease, and mortality displacement. Environ Res. 2011;111(8):1286–92.PubMedCrossRef
3.
go back to reference Son JY, Gouveia N, Bravo MA, De Freitas CU, Bell ML. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil. Int J Biometeorol. 2016;60(1):113–21.PubMedCrossRef Son JY, Gouveia N, Bravo MA, De Freitas CU, Bell ML. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil. Int J Biometeorol. 2016;60(1):113–21.PubMedCrossRef
4.
go back to reference Song X, Wang S, Li T, Tian J, Ding G, Wang J, et al. The impact of heat waves and cold spells on respiratory emergency department visits in Beijing. China Sci Total Environ. 2018;615:1499–505.PubMedCrossRef Song X, Wang S, Li T, Tian J, Ding G, Wang J, et al. The impact of heat waves and cold spells on respiratory emergency department visits in Beijing. China Sci Total Environ. 2018;615:1499–505.PubMedCrossRef
5.
go back to reference Revich B, Shaposhnikov D. Temperature-induced excess mortality in Moscow. Russia Int J Biometeorol. 2008;52(5):367–74.PubMedCrossRef Revich B, Shaposhnikov D. Temperature-induced excess mortality in Moscow. Russia Int J Biometeorol. 2008;52(5):367–74.PubMedCrossRef
6.
go back to reference Yang LT, Chang YM, Hsieh TH, Hou WH, Li CY. Associations of ambient temperature with mortality rates of cardiovascular and respiratory diseases in Taiwan: a subtropical country. Acta Cardiol Sin. 2018;34(2):166.PubMedPubMedCentral Yang LT, Chang YM, Hsieh TH, Hou WH, Li CY. Associations of ambient temperature with mortality rates of cardiovascular and respiratory diseases in Taiwan: a subtropical country. Acta Cardiol Sin. 2018;34(2):166.PubMedPubMedCentral
7.
go back to reference Iñiguez C, Royé D, Tobías A. Contrasting patterns of temperature related mortality and hospitalization by cardiovascular and respiratory diseases in 52 Spanish cities. Environ Res. 2021;192: 110191.PubMedCrossRef Iñiguez C, Royé D, Tobías A. Contrasting patterns of temperature related mortality and hospitalization by cardiovascular and respiratory diseases in 52 Spanish cities. Environ Res. 2021;192: 110191.PubMedCrossRef
8.
go back to reference Kouis P, Kakkoura M, Ziogas K, Paschalidou AΚ, Papatheodorou SI. The effect of ambient air temperature on cardiovascular and respiratory mortality in Thessaloniki. Greece Sci Total Environ. 2019;647:1351–8.PubMedCrossRef Kouis P, Kakkoura M, Ziogas K, Paschalidou AΚ, Papatheodorou SI. The effect of ambient air temperature on cardiovascular and respiratory mortality in Thessaloniki. Greece Sci Total Environ. 2019;647:1351–8.PubMedCrossRef
9.
go back to reference Rodrigues M, Natário I, do Rosário de Oliveira Martins M. Estimate the effects of environmental determining factors on childhood asthma hospital admissions in Lisbon, Portugal: a time series modelling study. Theor Appl Climatol. 2021;143(1):809–21.CrossRef Rodrigues M, Natário I, do Rosário de Oliveira Martins M. Estimate the effects of environmental determining factors on childhood asthma hospital admissions in Lisbon, Portugal: a time series modelling study. Theor Appl Climatol. 2021;143(1):809–21.CrossRef
10.
go back to reference Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet. 2015;386(9991):369–75.CrossRef Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet. 2015;386(9991):369–75.CrossRef
11.
go back to reference Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, et al. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol. 2008;168(12):1397–408.PubMedCrossRef Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, et al. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol. 2008;168(12):1397–408.PubMedCrossRef
12.
go back to reference Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, et al. Heat effects on mortality in 15 European cities. Epidemiology. 2008;19(5):711–9.PubMedCrossRef Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, et al. Heat effects on mortality in 15 European cities. Epidemiology. 2008;19(5):711–9.PubMedCrossRef
13.
go back to reference D’Ippoliti D, Michelozzi P, Marino C, de Donato F, Menne B, Katsouyanni K, et al. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ Health. 2010;9(1):1–9. D’Ippoliti D, Michelozzi P, Marino C, de Donato F, Menne B, Katsouyanni K, et al. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ Health. 2010;9(1):1–9.
14.
go back to reference de Donato FK, Leone M, Noce D, Davoli M, Michelozzi P. The impact of the February 2012 cold spell on health in Italy using surveillance data. PLoS ONE. 2013;8(4):e61720.CrossRef de Donato FK, Leone M, Noce D, Davoli M, Michelozzi P. The impact of the February 2012 cold spell on health in Italy using surveillance data. PLoS ONE. 2013;8(4):e61720.CrossRef
15.
go back to reference Rodrigues M, Santana P, Rocha A. Modelling of temperature-attributable mortality among the elderly in Lisbon metropolitan area, Portugal: a contribution to local strategy for effective prevention plans. J Urban Health. 2021;98(4):516–31.PubMedPubMedCentralCrossRef Rodrigues M, Santana P, Rocha A. Modelling of temperature-attributable mortality among the elderly in Lisbon metropolitan area, Portugal: a contribution to local strategy for effective prevention plans. J Urban Health. 2021;98(4):516–31.PubMedPubMedCentralCrossRef
16.
go back to reference Huynen MM, Martens P, Schram D, Weijenberg MP, Kunst AE. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect. 2001;109(5):463–70.PubMedPubMedCentralCrossRef Huynen MM, Martens P, Schram D, Weijenberg MP, Kunst AE. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect. 2001;109(5):463–70.PubMedPubMedCentralCrossRef
17.
go back to reference Gasparrini A, Armstrong B, Kovats S, Wilkinson P. The effect of high temperatures on cause-specific mortality in England and Wales. Occup Environ Med. 2012;69(1):56–61.PubMedCrossRef Gasparrini A, Armstrong B, Kovats S, Wilkinson P. The effect of high temperatures on cause-specific mortality in England and Wales. Occup Environ Med. 2012;69(1):56–61.PubMedCrossRef
18.
go back to reference Conlon KC, Rajkovich NB, White-Newsome JL, Larsen L, O’Neill MS. Preventing cold-related morbidity and mortality in a changing climate. Maturitas. 2011;69(3):197–202.PubMedPubMedCentralCrossRef Conlon KC, Rajkovich NB, White-Newsome JL, Larsen L, O’Neill MS. Preventing cold-related morbidity and mortality in a changing climate. Maturitas. 2011;69(3):197–202.PubMedPubMedCentralCrossRef
19.
go back to reference Marí-Dell’Olmo M, Tobías A, Gómez-Gutiérrez A, Rodríguez-Sanz M, de Olalla PG, Camprubí E, et al. Social inequalities in the association between temperature and mortality in a South European context. Int J Public Health. 2019;64(1):27–37.PubMedCrossRef Marí-Dell’Olmo M, Tobías A, Gómez-Gutiérrez A, Rodríguez-Sanz M, de Olalla PG, Camprubí E, et al. Social inequalities in the association between temperature and mortality in a South European context. Int J Public Health. 2019;64(1):27–37.PubMedCrossRef
20.
go back to reference Ragettli MS, Vicedo-Cabrera AM, Schindler C, Röösli M. Exploring the association between heat and mortality in Switzerland between 1995 and 2013. Environ Res. 2017;158:703–9.PubMedCrossRef Ragettli MS, Vicedo-Cabrera AM, Schindler C, Röösli M. Exploring the association between heat and mortality in Switzerland between 1995 and 2013. Environ Res. 2017;158:703–9.PubMedCrossRef
22.
go back to reference Galdies C, Said A, Camilleri L, Caruana M. Climate change trends in Malta and related beliefs, concerns and attitudes toward adaptation among Gozitan farmers. Eur J Agron. 2016;74:18–28.CrossRef Galdies C, Said A, Camilleri L, Caruana M. Climate change trends in Malta and related beliefs, concerns and attitudes toward adaptation among Gozitan farmers. Eur J Agron. 2016;74:18–28.CrossRef
25.
go back to reference Galdies C, Vella K. Future impacts on Malta’s agriculture based on multi-model results from IPCC’s CMIP5 climate change models. In: Castro P, Azul AM, Leal Filho W, Azeiteiro UM, editors. Climate change-resilient agriculture and agroforestry—ecosystem services and sustainability. Springer; 2019. p. 137–56. Galdies C, Vella K. Future impacts on Malta’s agriculture based on multi-model results from IPCC’s CMIP5 climate change models. In: Castro P, Azul AM, Leal Filho W, Azeiteiro UM, editors. Climate change-resilient agriculture and agroforestry—ecosystem services and sustainability. Springer; 2019. p. 137–56.
26.
go back to reference Akerlof K, DeBono R, Berry P, Leiserowitz A, Roser-Renouf C, Clarke KL, Rogaeva A, Nisbet MC, Weathers MR, Maibach EW. Public perceptions of climate change as a human health risk: surveys of the United States, Canada and Malta. Int J Environ Res Public Health. 2010;7(6):2559–606.PubMedPubMedCentralCrossRef Akerlof K, DeBono R, Berry P, Leiserowitz A, Roser-Renouf C, Clarke KL, Rogaeva A, Nisbet MC, Weathers MR, Maibach EW. Public perceptions of climate change as a human health risk: surveys of the United States, Canada and Malta. Int J Environ Res Public Health. 2010;7(6):2559–606.PubMedPubMedCentralCrossRef
27.
go back to reference Wu S, Wei Z, Greene CM, Yang P, Su J, Song Y, Iuliano AD, Wang Q. Mortality burden from seasonal influenza and 2009 H1N1 pandemic influenza in Beijing, China, 2007–2013. Influenza Other Respir Viruses. 2018;12(1):88–97.PubMedCrossRef Wu S, Wei Z, Greene CM, Yang P, Su J, Song Y, Iuliano AD, Wang Q. Mortality burden from seasonal influenza and 2009 H1N1 pandemic influenza in Beijing, China, 2007–2013. Influenza Other Respir Viruses. 2018;12(1):88–97.PubMedCrossRef
28.
go back to reference Li L, Liu Y, Wu P, Peng Z, Wang X, Chen T, Wong JY, Yang J, Bond HS, Wang L, Lau YC. Influenza-associated excess respiratory mortality in China, 2010–15: a population-based study. Lancet Public Health. 2019;4(9):e473–81.PubMedPubMedCentralCrossRef Li L, Liu Y, Wu P, Peng Z, Wang X, Chen T, Wong JY, Yang J, Bond HS, Wang L, Lau YC. Influenza-associated excess respiratory mortality in China, 2010–15: a population-based study. Lancet Public Health. 2019;4(9):e473–81.PubMedPubMedCentralCrossRef
34.
go back to reference Alduchov OA, Eskridge RE. Complex quality control of upper-air variables (geopotential height, temperature, wind, and humidity) at mandatory and significant levels for the cards data set. Final report. National Climatic Data Center, Asheville, NC (United States). 1996; Final report (No. PB-97-132286/XAB). Alduchov OA, Eskridge RE. Complex quality control of upper-air variables (geopotential height, temperature, wind, and humidity) at mandatory and significant levels for the cards data set. Final report. National Climatic Data Center, Asheville, NC (United States). 1996; Final report (No. PB-97-132286/XAB).
35.
go back to reference Masterson JM, Richardson FA. Humidex, a method of quantifying human discomfort due to excessive heat and humidity, Environment Canada. Atmos Environ Serv. 1979;151:1–79. Masterson JM, Richardson FA. Humidex, a method of quantifying human discomfort due to excessive heat and humidity, Environment Canada. Atmos Environ Serv. 1979;151:1–79.
36.
go back to reference Alfano FRDA, Palella BI, Riccio G. The role of measurement accuracy on the thermal environment assessment by means of PMV index. Build Environ. 2011;46(7):1361–9.CrossRef Alfano FRDA, Palella BI, Riccio G. The role of measurement accuracy on the thermal environment assessment by means of PMV index. Build Environ. 2011;46(7):1361–9.CrossRef
37.
go back to reference Armstrong B. Models for the relationship between ambient temperature and daily mortality. Epidemiology. 2006;17:624–31.PubMedCrossRef Armstrong B. Models for the relationship between ambient temperature and daily mortality. Epidemiology. 2006;17:624–31.PubMedCrossRef
38.
go back to reference Weinberger KR, Haykin L, Eliot MN, Schwartz JD, Gasparrini A, Wellenius GA. Projected temperature-related deaths in ten large US metropolitan areas under different climate change scenarios. Environ Int. 2017;107:196–204.PubMedPubMedCentralCrossRef Weinberger KR, Haykin L, Eliot MN, Schwartz JD, Gasparrini A, Wellenius GA. Projected temperature-related deaths in ten large US metropolitan areas under different climate change scenarios. Environ Int. 2017;107:196–204.PubMedPubMedCentralCrossRef
40.
go back to reference Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, et al. Heat wave and mortality: a multicounty, multicommunity study. Environ Health Perspect. 2017;125(8): 087006.PubMedPubMedCentralCrossRef Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, et al. Heat wave and mortality: a multicounty, multicommunity study. Environ Health Perspect. 2017;125(8): 087006.PubMedPubMedCentralCrossRef
41.
go back to reference Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, Lavigne E, Coelho MDSZS, Leone M, Pan X, Tong S. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology. 2014;25(6):781.PubMedPubMedCentralCrossRef Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, Lavigne E, Coelho MDSZS, Leone M, Pan X, Tong S. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology. 2014;25(6):781.PubMedPubMedCentralCrossRef
42.
go back to reference Phung D, Guo Y, Thai P, Rutherford S, Wang X, Nguyen M, et al. The effects of high temperature on cardiovascular admissions in the most populous tropical city in Vietnam. Environ Pollut. 2016;208:33–9.PubMedCrossRef Phung D, Guo Y, Thai P, Rutherford S, Wang X, Nguyen M, et al. The effects of high temperature on cardiovascular admissions in the most populous tropical city in Vietnam. Environ Pollut. 2016;208:33–9.PubMedCrossRef
44.
go back to reference Qiao Z, Guo Y, Yu W, Tong S. Assessment of short-and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004. Environ Health Perspect. 2015;123(8):766–72.PubMedPubMedCentralCrossRef Qiao Z, Guo Y, Yu W, Tong S. Assessment of short-and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004. Environ Health Perspect. 2015;123(8):766–72.PubMedPubMedCentralCrossRef
45.
go back to reference Guo Y, Barnett AG, Pan X, Yu W, Tong S. The impact of temperature on mortality in Tianjin, China: a case-crossover design with a distributed lag nonlinear model. Environ Health Perspect. 2011;119(12):1719–25.PubMedPubMedCentralCrossRef Guo Y, Barnett AG, Pan X, Yu W, Tong S. The impact of temperature on mortality in Tianjin, China: a case-crossover design with a distributed lag nonlinear model. Environ Health Perspect. 2011;119(12):1719–25.PubMedPubMedCentralCrossRef
46.
go back to reference Rocklöv J, Forsberg B. The effect of temperature on mortality in Stockholm 1998–2003: a study of lag structures and heatwave effects. Scand J Public Health. 2008;36(5):516–23.PubMedCrossRef Rocklöv J, Forsberg B. The effect of temperature on mortality in Stockholm 1998–2003: a study of lag structures and heatwave effects. Scand J Public Health. 2008;36(5):516–23.PubMedCrossRef
47.
go back to reference Fowler T, Southgate RJ, Waite T, Harrell R, Kovats S, Bone A, Doyle Y, Murray V. Excess winter deaths in Europe: a multi-country descriptive analysis. Eur J Public Health. 2015;25(2):339–45.PubMedCrossRef Fowler T, Southgate RJ, Waite T, Harrell R, Kovats S, Bone A, Doyle Y, Murray V. Excess winter deaths in Europe: a multi-country descriptive analysis. Eur J Public Health. 2015;25(2):339–45.PubMedCrossRef
49.
50.
go back to reference Muggeo VM, Hajat S. Modelling the non-linear multiple-lag effects of ambient temperature on mortality in Santiago and Palermo: a constrained segmented distributed lag approach. Occup Environ Med. 2009;66(9):584–91.PubMedCrossRef Muggeo VM, Hajat S. Modelling the non-linear multiple-lag effects of ambient temperature on mortality in Santiago and Palermo: a constrained segmented distributed lag approach. Occup Environ Med. 2009;66(9):584–91.PubMedCrossRef
51.
go back to reference Swart RJ, Biesbroek GR, Binnerup S, Carter T, Cowan C, Henrichs T, Loquen S, Mela H, Morecroft M, Reese M, Rey D. Europe adapts to climate change. Comparing National Adaptation Strategies in Europe. PEER; 2009. Swart RJ, Biesbroek GR, Binnerup S, Carter T, Cowan C, Henrichs T, Loquen S, Mela H, Morecroft M, Reese M, Rey D. Europe adapts to climate change. Comparing National Adaptation Strategies in Europe. PEER; 2009.
52.
go back to reference Eng H, Mercer JB. Mortality from cardiovascular diseases and its relationship to air temperature during the winter months in Dublin and Oslo/Akershus. Int J Circumpolar Health. 2000;59(3–4):176–81.PubMed Eng H, Mercer JB. Mortality from cardiovascular diseases and its relationship to air temperature during the winter months in Dublin and Oslo/Akershus. Int J Circumpolar Health. 2000;59(3–4):176–81.PubMed
53.
go back to reference Reichert TA, Simonsen L, Sharma A, Pardo SA, Fedson DS, Miller MA. Influenza and the winter increase in mortality in the United States, 1959–1999. Am J Epidemiol. 2017;160(5):492–502.CrossRef Reichert TA, Simonsen L, Sharma A, Pardo SA, Fedson DS, Miller MA. Influenza and the winter increase in mortality in the United States, 1959–1999. Am J Epidemiol. 2017;160(5):492–502.CrossRef
54.
go back to reference Vestergaard LS, Nielsen J, Krause TG, Espenhain L, Tersago K, Sierra NB, et al. Excess all-cause and influenza-attributable mortality in Europe, December 2016 to February 2017. Euro Surveill. 2017;22(14):30506.PubMedPubMedCentralCrossRef Vestergaard LS, Nielsen J, Krause TG, Espenhain L, Tersago K, Sierra NB, et al. Excess all-cause and influenza-attributable mortality in Europe, December 2016 to February 2017. Euro Surveill. 2017;22(14):30506.PubMedPubMedCentralCrossRef
Metadata
Title
The adverse effect of ambient temperature on respiratory deaths in a high population density area: the case of Malta
Authors
Shafkat Jahan
John Paul Cauchi
Charles Galdies
Kathleen England
Darren Wraith
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Climate Change
Published in
Respiratory Research / Issue 1/2022
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-022-02218-z

Other articles of this Issue 1/2022

Respiratory Research 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine