Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2021

Open Access 01-12-2021 | Clavicle Fracture | Research article

Comparing the locking screw direction of three locking plates for lateral clavicle fractures: a simulation study

Authors: Shingo Abe, Kota Koizumi, Tsuyoshi Murase, Kohji Kuriyama

Published in: BMC Musculoskeletal Disorders | Issue 1/2021

Login to get access

Abstract

Background

The locking plate is a useful treatment for lateral clavicle fractures, however, there are limits to the fragment size that can be fixed. The current study aimed to measure the screw angles of three locking plates for lateral clavicle fractures. In addition, to assess the number of screws that can be inserted in different fragment sizes, to elucidate the size limits for locking plate fixation.

Methods

The following three locking plates were analyzed: the distal clavicle plate [Acumed, LLC, Oregon, the USA], the LCP clavicle plate lateral extension [Depuy Synthes, LLC, PA, the USA], and the HAI clavicle plate [HOMS Engineering, Inc., Nagano, Japan]. We measured the angles between the most medial and lateral locking screws in the coronal plane and between the most anterior and posterior locking screws in the sagittal plane. A computer simulation was used to position the plates as laterally as possible in ten normal three-dimensional clavicle models. Lateral fragment sizes of 10, 15, 20, 25, and 30 mm were simulated in the acromioclavicular joint, and the number of screws that could be inserted in the lateral fragment was assessed. Subsequently, the area covered by the locking screws on the inferior surface of the clavicle was measured.

Results

The distal clavicle plate had relatively large screw angles (20° in the coronal plane and 32° in the sagittal plane). The LCP clavicle lateral extension had a large angle (38°) in the sagittal plane. However, the maximum angle of the HAI clavicle plate was 13° in either plane. The distal clavicle plate allowed most screws to be inserted in each size of bone fragment. For all locking plates, all screws could be inserted in 25 mm fragments. The screws of distal clavicle plate covered the largest area on the inferior surface of the clavicle.

Conclusions

Screw angles and the numbers of screws that could be inserted in the lateral fragment differed among products. Other augmented fixation procedures should be considered for fractures with fragment sizes < 25 mm that cannot be fixed with a sufficient number of screws.
Appendix
Available only for authorised users
Literature
14.
go back to reference Craig E. Fractures of the clavicle. In: Rockwood Jr CA, Matson III FA, editors. The Shoulder. Philadelphia: WB Saunders; 1990. p. 367–412. Craig E. Fractures of the clavicle. In: Rockwood Jr CA, Matson III FA, editors. The Shoulder. Philadelphia: WB Saunders; 1990. p. 367–412.
Metadata
Title
Comparing the locking screw direction of three locking plates for lateral clavicle fractures: a simulation study
Authors
Shingo Abe
Kota Koizumi
Tsuyoshi Murase
Kohji Kuriyama
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2021
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-021-04697-5

Other articles of this Issue 1/2021

BMC Musculoskeletal Disorders 1/2021 Go to the issue