Skip to main content
Top
Published in: BMC Ophthalmology 1/2024

Open Access 01-12-2024 | Research

Classifications of anterior segment structure of congenital corneal opacity in infants and toddlers by ultrasound biomicroscopy and slit-lamp microscopic photographs: an observational study

Authors: Jing Hong, Zijun Xie, Xin Wang, Ting Yu, Siyi Ma, Hanzhi Ben, Shao-feng Gu

Published in: BMC Ophthalmology | Issue 1/2024

Login to get access

Abstract

Background

The structural features have an impact on the surgical prognosis for congenital corneal opacity (CCO). The structural classification system of CCO, however, is lacking. Based on data from ultrasound biomicroscopy (UBM) findings in infants and toddlers with CCO, this research proposed a classification system for the anterior segment structure severity.

Methods

Medical records, preoperative UBM images and slit-lamp photographs of infants and toddlers diagnosed with CCO at University Third Hospital between December 2018 and June 2022 were reviewed. According to the anterior segment structural features observed in UBM images, eyes were classified as follows: U1, opaque cornea only; U2, central anterior synechia; U3, peripheral anterior synechia combined with angle closure; and U4, aniridia or lens anomaly. The opacity appearance and corneal vascularization density observed in slit-lamp photographs were assigned grades according to previous studies. The extent of vascularization was also recorded. The corresponding intraocular anomaly classifications and ocular surface lesion severity were analysed.

Results

Among 81 eyes (65 patients), 41 (50.6%) were right eyes, and 40 (49.4%) were left eyes. The median age at examination was 6.91 months (n = 81, 1.00, 34.00). Two (2.5%) of the 81 eyes were classified as U1, 20 (24.7%) as U2, 22 (27.2%) as U3a, 11 (13.6%) as U3b and 26 (32.1%) as U4. Bilateral CCO eyes had more severe UBM classifications (P = 0.019), more severe dysgenesis (P = 0.012) and a larger angle closure (P = 0.009). Eyes with more severe UBM classifications had higher opacity grades (P = 0.003) and vascularization grades (P = 0.014) and a larger vascularization extent (P = 0.001). Eyes with dysgenesis had higher haze grades (P = 0.012) and more severe vascularization (P = 0.003 for density; P = 0.008 for extent), while the angle closure range was related to haze grade (P = 0.013) and vascularization extent (P = 0.003).

Conclusions

This classification method based on UBM and slit-lamp photography findings in the eyes of CCO infants and toddlers can truly reflect the degree of abnormality of the ocular surface and anterior segment and is correlated with the severity of ocular surface anomalies. This method might provide meaningful guidance for surgical procedure design and prognostic determinations for keratoplasty in CCO eyes.
Literature
1.
go back to reference Bermejo E, Martínez-Frías ML. Congenital eye malformations: clinical-epidemiological analysis of 1,124,654 consecutive births in Spain. Am J Med Genet. 1998;75(5):497–504.CrossRefPubMed Bermejo E, Martínez-Frías ML. Congenital eye malformations: clinical-epidemiological analysis of 1,124,654 consecutive births in Spain. Am J Med Genet. 1998;75(5):497–504.CrossRefPubMed
2.
go back to reference Kurilec JM, Zaidman GW. Incidence of Peters anomaly and congenital corneal opacities interfering with vision in the United States. Cornea. 2014;33(8):848–50.CrossRefPubMed Kurilec JM, Zaidman GW. Incidence of Peters anomaly and congenital corneal opacities interfering with vision in the United States. Cornea. 2014;33(8):848–50.CrossRefPubMed
3.
go back to reference Vanathi M, Panda A, Vengayil S, Chaudhuri Z, Dada T. Pediatric Keratoplasty. Surv Ophthalmol. 2009;54(2):245–71.CrossRefPubMed Vanathi M, Panda A, Vengayil S, Chaudhuri Z, Dada T. Pediatric Keratoplasty. Surv Ophthalmol. 2009;54(2):245–71.CrossRefPubMed
4.
go back to reference Nischal KK. A new approach to the classification of neonatal corneal opacities. Curr Opin Ophthalmol. 2012;23(5):344–54.CrossRefPubMed Nischal KK. A new approach to the classification of neonatal corneal opacities. Curr Opin Ophthalmol. 2012;23(5):344–54.CrossRefPubMed
5.
go back to reference Vanathi M, Raj N, Kusumesh R, Aron N, Gupta N, Tandon R. Update on pediatric corneal diseases and keratoplasty. Surv Ophthalmol. 2022;67(6):1647–84.CrossRefPubMed Vanathi M, Raj N, Kusumesh R, Aron N, Gupta N, Tandon R. Update on pediatric corneal diseases and keratoplasty. Surv Ophthalmol. 2022;67(6):1647–84.CrossRefPubMed
6.
go back to reference Kim YW, Choi HJ, Kim MK, Wee WR, Yu YS, Oh JY. Clinical outcome of penetrating keratoplasty in patients 5 years or younger: peters anomaly versus sclerocornea. Cornea. 2013;32(11):1432–6.CrossRefPubMed Kim YW, Choi HJ, Kim MK, Wee WR, Yu YS, Oh JY. Clinical outcome of penetrating keratoplasty in patients 5 years or younger: peters anomaly versus sclerocornea. Cornea. 2013;32(11):1432–6.CrossRefPubMed
7.
go back to reference Xavier Dos Santos, Araújo ME, Santos NC, Souza LBd, Sato EH, de Freitas D. Primary Pediatric Keratoplasty: etiology, graft survival, and visual outcome. Am J Ophthalmol. 2020;212:162–8.CrossRef Xavier Dos Santos, Araújo ME, Santos NC, Souza LBd, Sato EH, de Freitas D. Primary Pediatric Keratoplasty: etiology, graft survival, and visual outcome. Am J Ophthalmol. 2020;212:162–8.CrossRef
8.
go back to reference Zhang Y, Liu Y, Liang Q, Miao S, Lin Q, Zhang J, Pan Z, Lu Q. Indications and outcomes of penetrating Keratoplasty in infants and children of Beijing, China. Cornea. 2018;37(10):1243–8.CrossRefPubMed Zhang Y, Liu Y, Liang Q, Miao S, Lin Q, Zhang J, Pan Z, Lu Q. Indications and outcomes of penetrating Keratoplasty in infants and children of Beijing, China. Cornea. 2018;37(10):1243–8.CrossRefPubMed
9.
go back to reference Nischal KK. Genetics of congenital corneal opacification–impact on diagnosis and treatment. Cornea. 2015;34(Suppl 10):24–S34.CrossRef Nischal KK. Genetics of congenital corneal opacification–impact on diagnosis and treatment. Cornea. 2015;34(Suppl 10):24–S34.CrossRef
10.
go back to reference Majander A, Kivelä TT, Krootila K. Indications and outcomes of keratoplasties in children during a 40-year period. Acta Ophthalmol. 2016;94(6):618–24.CrossRefPubMed Majander A, Kivelä TT, Krootila K. Indications and outcomes of keratoplasties in children during a 40-year period. Acta Ophthalmol. 2016;94(6):618–24.CrossRefPubMed
11.
go back to reference Mun-Wei L, Md Said H, Punitan R, Ibrahim M, Shatriah I. Indications, Clinical Outcomes, and Survival Rate of Pediatric Penetrating Keratoplasty in Suburban Malaysia: A 10-year Experience. Cureus 2018, 10(12):e3744. Mun-Wei L, Md Said H, Punitan R, Ibrahim M, Shatriah I. Indications, Clinical Outcomes, and Survival Rate of Pediatric Penetrating Keratoplasty in Suburban Malaysia: A 10-year Experience. Cureus 2018, 10(12):e3744.
12.
go back to reference Sun Y, Lin Q, Miao S, Wang W, Pan Z. Analysis of graft failure after primary penetrating Keratoplasty in Children with Peters Anomaly. Cornea. 2020;39(8):961–7.CrossRefPubMed Sun Y, Lin Q, Miao S, Wang W, Pan Z. Analysis of graft failure after primary penetrating Keratoplasty in Children with Peters Anomaly. Cornea. 2020;39(8):961–7.CrossRefPubMed
13.
go back to reference Yang LL, Lambert SR, Lynn MJ, Stulting RD. Long-term results of corneal graft survival in infants and children with peters anomaly. Ophthalmology. 1999;106(4):833–48.CrossRefPubMed Yang LL, Lambert SR, Lynn MJ, Stulting RD. Long-term results of corneal graft survival in infants and children with peters anomaly. Ophthalmology. 1999;106(4):833–48.CrossRefPubMed
14.
go back to reference Yang Y, Xiang J, Xu J. Anterior synechiae after penetrating keratoplasty in infants and children with Peters’ anomaly. BMC Ophthalmol. 2022;22(1):259.CrossRefPubMedPubMedCentral Yang Y, Xiang J, Xu J. Anterior synechiae after penetrating keratoplasty in infants and children with Peters’ anomaly. BMC Ophthalmol. 2022;22(1):259.CrossRefPubMedPubMedCentral
16.
go back to reference Gould DB, John SWM. Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum Mol Genet. 2002;11(10):1185–93.CrossRefPubMed Gould DB, John SWM. Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum Mol Genet. 2002;11(10):1185–93.CrossRefPubMed
17.
go back to reference Ma AS, Grigg JR, Jamieson RV. Phenotype-genotype correlations and emerging pathways in ocular anterior segment dysgenesis. Hum Genet. 2019;138(8–9):899–915.CrossRefPubMed Ma AS, Grigg JR, Jamieson RV. Phenotype-genotype correlations and emerging pathways in ocular anterior segment dysgenesis. Hum Genet. 2019;138(8–9):899–915.CrossRefPubMed
18.
go back to reference Nischal KK, Lathrop KL. The Palisades of Vogt in Congenital Corneal Opacification (An American Ophthalmological Society Thesis). Transactions of the American Ophthalmological Society 2016, 114:T8. Nischal KK, Lathrop KL. The Palisades of Vogt in Congenital Corneal Opacification (An American Ophthalmological Society Thesis). Transactions of the American Ophthalmological Society 2016, 114:T8.
19.
go back to reference Alexander JL, Wei L, Palmer J, Darras A, Levin MR, Berry JL, Ludeman E. A systematic review of ultrasound biomicroscopy use in pediatric ophthalmology. Eye. 2021;35(1):265–76.CrossRefPubMed Alexander JL, Wei L, Palmer J, Darras A, Levin MR, Berry JL, Ludeman E. A systematic review of ultrasound biomicroscopy use in pediatric ophthalmology. Eye. 2021;35(1):265–76.CrossRefPubMed
20.
go back to reference Nischal KK, Naor J, Jay V, MacKeen LD, Rootman DS. Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy. Br J Ophthalmol. 2002;86(1):62–9.CrossRefPubMedPubMedCentral Nischal KK, Naor J, Jay V, MacKeen LD, Rootman DS. Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy. Br J Ophthalmol. 2002;86(1):62–9.CrossRefPubMedPubMedCentral
21.
go back to reference Cogswell D, Sun M, Greenberg E, Margo CE, Espana EM. Creation and grading of experimental corneal scars in mice models. Ocul Surf. 2021;19:53–62.CrossRefPubMed Cogswell D, Sun M, Greenberg E, Margo CE, Espana EM. Creation and grading of experimental corneal scars in mice models. Ocul Surf. 2021;19:53–62.CrossRefPubMed
22.
go back to reference Baltaziak M, Chew HF, Podbielski DW, Ahmed IIK. Glaucoma after corneal replacement. Surv Ophthalmol. 2018;63(2):135–48.CrossRefPubMed Baltaziak M, Chew HF, Podbielski DW, Ahmed IIK. Glaucoma after corneal replacement. Surv Ophthalmol. 2018;63(2):135–48.CrossRefPubMed
23.
go back to reference Sharma N, Priyadarshini K, Agarwal R, Bafna RK, Nagpal R, Sinha R, Agarwal T, Maharana PK, Titiyal JS. Role of microscope-intraoperative Optical Coherence Tomography in Pediatric Keratoplasty: AComparative Study. Am J Ophthalmol. 2021;221:190–8.CrossRefPubMed Sharma N, Priyadarshini K, Agarwal R, Bafna RK, Nagpal R, Sinha R, Agarwal T, Maharana PK, Titiyal JS. Role of microscope-intraoperative Optical Coherence Tomography in Pediatric Keratoplasty: AComparative Study. Am J Ophthalmol. 2021;221:190–8.CrossRefPubMed
24.
go back to reference Shi Y, Wang H, Han Y, Cao K, Vu V, Hu M, Xin C, Zhang Q, Wang N. Correlation between Trabeculodysgenesis assessed by Ultrasound Biomicroscopy and Surgical outcomes in primary congenital Glaucoma. Am J Ophthalmol. 2018;196:57–64.CrossRefPubMed Shi Y, Wang H, Han Y, Cao K, Vu V, Hu M, Xin C, Zhang Q, Wang N. Correlation between Trabeculodysgenesis assessed by Ultrasound Biomicroscopy and Surgical outcomes in primary congenital Glaucoma. Am J Ophthalmol. 2018;196:57–64.CrossRefPubMed
25.
go back to reference Faraj LA, Said DG, Al-Aqaba M, Otri AM, Dua HS. Clinical evaluation and characterisation of corneal vascularisation. Br J Ophthalmol. 2016;100(3):315–22.CrossRefPubMed Faraj LA, Said DG, Al-Aqaba M, Otri AM, Dua HS. Clinical evaluation and characterisation of corneal vascularisation. Br J Ophthalmol. 2016;100(3):315–22.CrossRefPubMed
26.
go back to reference Williams AL, Bohnsack BL. The ocular neural crest: specification, Migration, and then what? Front Cell Dev Biology. 2020;8:595896.CrossRef Williams AL, Bohnsack BL. The ocular neural crest: specification, Migration, and then what? Front Cell Dev Biology. 2020;8:595896.CrossRef
27.
go back to reference Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, et al. Pathophysiology of aniridia-associated keratopathy: developmental aspects and unanswered questions. Ocul Surf. 2021;22:245–66.CrossRefPubMed Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, et al. Pathophysiology of aniridia-associated keratopathy: developmental aspects and unanswered questions. Ocul Surf. 2021;22:245–66.CrossRefPubMed
29.
30.
go back to reference Latta L, Ludwig N, Krammes L, Stachon T, Fries FN, Mukwaya A, Szentmáry N, Seitz B, Wowra B, Kahraman M, et al. Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia. Ocul Surf. 2021;19:115–27.CrossRefPubMed Latta L, Ludwig N, Krammes L, Stachon T, Fries FN, Mukwaya A, Szentmáry N, Seitz B, Wowra B, Kahraman M, et al. Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia. Ocul Surf. 2021;19:115–27.CrossRefPubMed
31.
go back to reference Chen L, Martino V, Dombkowski A, Williams T, West-Mays J, Gage PJ. AP-2β is a downstream Effector of PITX2 required to specify endothelium and establish angiogenic privilege during corneal development. Investig Ophthalmol Vis Sci. 2016;57(3):1072–81.CrossRef Chen L, Martino V, Dombkowski A, Williams T, West-Mays J, Gage PJ. AP-2β is a downstream Effector of PITX2 required to specify endothelium and establish angiogenic privilege during corneal development. Investig Ophthalmol Vis Sci. 2016;57(3):1072–81.CrossRef
32.
go back to reference Seo S, Chen L, Liu W, Zhao D, Schultz KM, Sasman A, Liu T, Zhang HF, Gage PJ, Kume T. Foxc1 and Foxc2 in the neural crest are required for ocular anterior segment development. Investig Ophthalmol Vis Sci. 2017;58(3):1368–77.CrossRef Seo S, Chen L, Liu W, Zhao D, Schultz KM, Sasman A, Liu T, Zhang HF, Gage PJ, Kume T. Foxc1 and Foxc2 in the neural crest are required for ocular anterior segment development. Investig Ophthalmol Vis Sci. 2017;58(3):1368–77.CrossRef
33.
go back to reference Chen WS, Xiang DM, Hu LX. Ultrasound Biomicroscopy Detects Peters’ Anomaly and Rieger’s Anomaly in Infants. Journal of ophthalmology 2020, 2020:8346981. Chen WS, Xiang DM, Hu LX. Ultrasound Biomicroscopy Detects Peters’ Anomaly and Rieger’s Anomaly in Infants. Journal of ophthalmology 2020, 2020:8346981.
34.
go back to reference Waring GO, Rodrigues MM, Laibson PR. Anterior chamber cleavage syndrome. A stepladder classification. Surv Ophthalmol 1975, 20(1). Waring GO, Rodrigues MM, Laibson PR. Anterior chamber cleavage syndrome. A stepladder classification. Surv Ophthalmol 1975, 20(1).
35.
go back to reference Madhavan C, Basti S, Naduvilath TJ, Sangwan VS. Use of ultrasound biomicroscopic evaluation in preoperative planning of penetrating keratoplasty. Cornea. 2000;19(1):17–21.CrossRefPubMed Madhavan C, Basti S, Naduvilath TJ, Sangwan VS. Use of ultrasound biomicroscopic evaluation in preoperative planning of penetrating keratoplasty. Cornea. 2000;19(1):17–21.CrossRefPubMed
Metadata
Title
Classifications of anterior segment structure of congenital corneal opacity in infants and toddlers by ultrasound biomicroscopy and slit-lamp microscopic photographs: an observational study
Authors
Jing Hong
Zijun Xie
Xin Wang
Ting Yu
Siyi Ma
Hanzhi Ben
Shao-feng Gu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2024
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-024-03286-z

Other articles of this Issue 1/2024

BMC Ophthalmology 1/2024 Go to the issue