Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2015

Open Access 01-12-2015 | Research article

Classification of follicular lymphoma: the effect of computer aid on pathologists grading

Authors: Mohammad Faizal Ahmad Fauzi, Michael Pennell, Berkman Sahiner, Weijie Chen, Arwa Shana’ah, Jessica Hemminger, Alejandro Gru, Habibe Kurt, Michael Losos, Amy Joehlin-Price, Christina Kavran, Stephen M. Smith, Nicholas Nowacki, Sharmeen Mansor, Gerard Lozanski, Metin N. Gurcan

Published in: BMC Medical Informatics and Decision Making | Issue 1/2015

Login to get access

Abstract

Background

Follicular lymphoma (FL) is one of the most common lymphoid malignancies in the western world. FL cases are stratified into three histological grades based on the average centroblast count per high power field (HPF). The centroblast count is performed manually by the pathologist using an optical microscope and hematoxylin and eosin (H&E) stained tissue section. Although this is the current clinical practice, it suffers from high inter- and intra-observer variability and is vulnerable to sampling bias.

Methods

In this paper, we present a system, called Follicular Lymphoma Grading System (FLAGS), to assist the pathologist in grading FL cases. We also assess the effect of FLAGS on accuracy of expert and inexperienced readers. FLAGS automatically identifies possible HPFs for examination by analyzing H&E and CD20 stains, before classifying them into low or high risk categories. The pathologist is first asked to review the slides according to the current routine clinical practice, before being presented with FLAGS classification via color-coded map. The accuracy of the readers with and without FLAGS assistance is measured.

Results

FLAGS was used by four experts (board-certified hematopathologists) and seven pathology residents on 20 FL slides. Access to FLAGS improved overall reader accuracy with the biggest improvement seen among residents. An average AUC value of 0.75 was observed which generally indicates “acceptable” diagnostic performance.

Conclusions

The results of this study show that FLAGS can be useful in increasing the pathologists’ accuracy in grading the tissue. To the best of our knowledge, this study measure, for the first time, the effect of computerized image analysis on pathologists’ grading of follicular lymphoma. When fully developed, such systems have the potential to reduce sampling bias by examining an increased proportion of HPFs within follicle regions, as well as to reduce inter- and intra-reader variability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jaffe ES, Harris NL, Stein H, Vardiman JW. Tumours of haematopoietic and lymphoid tissues. Lyon, France: IRAC Press; 2008. Jaffe ES, Harris NL, Stein H, Vardiman JW. Tumours of haematopoietic and lymphoid tissues. Lyon, France: IRAC Press; 2008.
2.
go back to reference Metter GE, Nathwani BN, Burke JS, Winberg CD, Mann RB, Barcos M, et al. Morphological sub-classification of follicular lymphoma: variability of diagnoses among hematopathologists, a collaborative study between the repository center and pathology panel for lymphoma clinical studies. J Clin Oncol. 1985;3:25–38.PubMed Metter GE, Nathwani BN, Burke JS, Winberg CD, Mann RB, Barcos M, et al. Morphological sub-classification of follicular lymphoma: variability of diagnoses among hematopathologists, a collaborative study between the repository center and pathology panel for lymphoma clinical studies. J Clin Oncol. 1985;3:25–38.PubMed
3.
go back to reference Dick F, Van Lier S, Banks P, Frizzera G, Witrak G, Gibson R, et al. Use of the working formulation for non-Hodgkin’s lymphoma in epidemiological studies: agreement between reported diagnoses and a panel of experienced pathologists. J Natl Cancer Inst. 1987;78:1137–44.PubMed Dick F, Van Lier S, Banks P, Frizzera G, Witrak G, Gibson R, et al. Use of the working formulation for non-Hodgkin’s lymphoma in epidemiological studies: agreement between reported diagnoses and a panel of experienced pathologists. J Natl Cancer Inst. 1987;78:1137–44.PubMed
4.
go back to reference The Non-Hodgkin Lymphoma Classification Project. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin lymphoma. Blood. 1997;89:3909–18. The Non-Hodgkin Lymphoma Classification Project. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin lymphoma. Blood. 1997;89:3909–18.
5.
go back to reference Kornaropoulos E, Niazi M, Lozanski G, Gurcan MN. Histopathological image analysis for centroblasts classification through dimensionality reduction approaches. Cytometry: Part A. 2014;5(85):242–55.CrossRef Kornaropoulos E, Niazi M, Lozanski G, Gurcan MN. Histopathological image analysis for centroblasts classification through dimensionality reduction approaches. Cytometry: Part A. 2014;5(85):242–55.CrossRef
6.
go back to reference Lozanski G, Pennell M, Shana'ah A, Zhao W, Gewirtz A, Racke F, et al. Inter-reader variability in follicular lymphoma grading: conventional and digital reading. J Pathol Inform. 2013;4(30):1–9. Lozanski G, Pennell M, Shana'ah A, Zhao W, Gewirtz A, Racke F, et al. Inter-reader variability in follicular lymphoma grading: conventional and digital reading. J Pathol Inform. 2013;4(30):1–9.
7.
go back to reference Fauzi M, Gokozan HN, Elder B, Puduvalli VK, Pierson CR, Otero JJ, et al. A multi-resolution textural approach to diagnostic neuropathology reporting. J Neurooncol. 2015;24:393–402.CrossRef Fauzi M, Gokozan HN, Elder B, Puduvalli VK, Pierson CR, Otero JJ, et al. A multi-resolution textural approach to diagnostic neuropathology reporting. J Neurooncol. 2015;24:393–402.CrossRef
8.
go back to reference Samsi S, Lozanski G, Shana’ah A, Krishanmurthy A, Gurcan MN. Detection of follicles from IHC stained slides of follicular lymphoma using iterative watershed. IEEE Transactions on Biomedical Imaging. 2010;57(10):2609–12.CrossRef Samsi S, Lozanski G, Shana’ah A, Krishanmurthy A, Gurcan MN. Detection of follicles from IHC stained slides of follicular lymphoma using iterative watershed. IEEE Transactions on Biomedical Imaging. 2010;57(10):2609–12.CrossRef
9.
go back to reference Belkacem-Boussaid K, Samsi S, Lozanski G, Gurcan MN. Automatic detection of follicular regions in H&E images using iterative shape index. Computerized Medical Imaging and Graphics. 2011;35(7–8):592–602.PubMedPubMedCentralCrossRef Belkacem-Boussaid K, Samsi S, Lozanski G, Gurcan MN. Automatic detection of follicular regions in H&E images using iterative shape index. Computerized Medical Imaging and Graphics. 2011;35(7–8):592–602.PubMedPubMedCentralCrossRef
10.
go back to reference Samsi S, Krishnamurthy A, Gurcan MN. An Efficient Computational Framework for the Analysis of Whole Slide Images: Application to Follicular Lymphoma Immunohistochemistry. Journal of Computational Science. 2012;3(5):269–79.PubMedPubMedCentralCrossRef Samsi S, Krishnamurthy A, Gurcan MN. An Efficient Computational Framework for the Analysis of Whole Slide Images: Application to Follicular Lymphoma Immunohistochemistry. Journal of Computational Science. 2012;3(5):269–79.PubMedPubMedCentralCrossRef
11.
go back to reference Cooper L, Sertel O, Kong J, Lozanski G, Huang K, Gurcan MN. Feature-Based Registration of Histopathology Images with Different Stains: An Application for Computerized Follicular Lymphoma Prognosis. Computer Methods and Programs in Biomedicine. 2009;96(3):182–92.PubMedPubMedCentralCrossRef Cooper L, Sertel O, Kong J, Lozanski G, Huang K, Gurcan MN. Feature-Based Registration of Histopathology Images with Different Stains: An Application for Computerized Follicular Lymphoma Prognosis. Computer Methods and Programs in Biomedicine. 2009;96(3):182–92.PubMedPubMedCentralCrossRef
12.
go back to reference Sertel O, Lozanski G, Shana'ah A, Gurcan MN. Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation. IEEE Trans Biomed Eng. 2010;57(10):2613–6.PubMedPubMedCentralCrossRef Sertel O, Lozanski G, Shana'ah A, Gurcan MN. Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation. IEEE Trans Biomed Eng. 2010;57(10):2613–6.PubMedPubMedCentralCrossRef
13.
go back to reference Sertel O, Kong J, Lozanski G, Shana'ah A, Gewirtz A, Racke F, et al. Computer-assisted grading of follicular lymphoma: High grade differentiation. Mod Pathol. 2008;21:371A. Sertel O, Kong J, Lozanski G, Shana'ah A, Gewirtz A, Racke F, et al. Computer-assisted grading of follicular lymphoma: High grade differentiation. Mod Pathol. 2008;21:371A.
14.
go back to reference Sertel O, Kong J, Lozanski G, Catalyurek U, Saltz JH, Gurcan MN. Computerized microscopic image analysis of follicular lymphoma. SPIE Medical Imaging 2008: Computer-Aided Diagnosis. 2008;6915:1–11. Sertel O, Kong J, Lozanski G, Catalyurek U, Saltz JH, Gurcan MN. Computerized microscopic image analysis of follicular lymphoma. SPIE Medical Imaging 2008: Computer-Aided Diagnosis. 2008;6915:1–11.
15.
go back to reference Samsi SS, Krishnamurthy AK, Groseclose M, Caprioli RM, Lozanski G, Gurcan MN. Imaging mass spectrometry analysis for follicular lymphoma grading. 2009. p. 6969–72. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Samsi SS, Krishnamurthy AK, Groseclose M, Caprioli RM, Lozanski G, Gurcan MN. Imaging mass spectrometry analysis for follicular lymphoma grading. 2009. p. 6969–72. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
16.
go back to reference Belhomme P, Toralba S, Plancoulaine B, Oger M, Gurcan MN, Bor-Angelier C. Heterogeneity assessment of histological tissue sections in whole slide images. Comput Med Imaging Graph. 2015;42:51–5.PubMedCrossRef Belhomme P, Toralba S, Plancoulaine B, Oger M, Gurcan MN, Bor-Angelier C. Heterogeneity assessment of histological tissue sections in whole slide images. Comput Med Imaging Graph. 2015;42:51–5.PubMedCrossRef
17.
go back to reference Oger M, Belhomme P, Gurcan MN. A general framework for the segmentation of follicular lymphoma virtual slides. Comput Med Imaging Graph. 2012;36(6):442–51.PubMedPubMedCentralCrossRef Oger M, Belhomme P, Gurcan MN. A general framework for the segmentation of follicular lymphoma virtual slides. Comput Med Imaging Graph. 2012;36(6):442–51.PubMedPubMedCentralCrossRef
18.
go back to reference Belkacem-Boussaid K, Sertel O, Lozanski G, Shana'aah A, Gurcan MN. Extraction of color features in the spectral domain to recognize centroblasts in histopathology. 2009. p. 3685–8. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Belkacem-Boussaid K, Sertel O, Lozanski G, Shana'aah A, Gurcan MN. Extraction of color features in the spectral domain to recognize centroblasts in histopathology. 2009. p. 3685–8. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
19.
go back to reference Sertel O, Kong J, Catalyurek UV, Lozanski G, Saltz JH, Gurcan MN. Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading. Journal of Signal Processing System. 2009;55:169–83.CrossRef Sertel O, Kong J, Catalyurek UV, Lozanski G, Saltz JH, Gurcan MN. Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading. Journal of Signal Processing System. 2009;55:169–83.CrossRef
20.
go back to reference Swain MJ, Ballard DH. Color indexing. International Journal of Computer Vision. 1991;7(1):11–32.CrossRef Swain MJ, Ballard DH. Color indexing. International Journal of Computer Vision. 1991;7(1):11–32.CrossRef
21.
go back to reference Obuchowski NA, Rockette HE. Hypothesis testing of the diagnostic accuracy for multiple diagnostic tests: an ANOVA approach with dependent observations. Communications in Statistics: Simulation and Computation. 1995;24:285–308.CrossRef Obuchowski NA, Rockette HE. Hypothesis testing of the diagnostic accuracy for multiple diagnostic tests: an ANOVA approach with dependent observations. Communications in Statistics: Simulation and Computation. 1995;24:285–308.CrossRef
22.
23.
go back to reference Chen W, Wunderlich A, Petrick N, Gallas BD. MRMC reader studies with binary agreement data: simulation, analysis, validation, and sizing. J Med Imaging. 2014;1(3):031011-1-9. Software available for download from https://github.com/DIDSR/iMRMC_Binary. Last Accessed: 28 December 2015. Chen W, Wunderlich A, Petrick N, Gallas BD. MRMC reader studies with binary agreement data: simulation, analysis, validation, and sizing. J Med Imaging. 2014;1(3):031011-1-9. Software available for download from https://​github.​com/​DIDSR/​iMRMC_​Binary. Last Accessed: 28 December 2015.
24.
go back to reference Wagner RF, Metz CE, Campbell G. Assessment of Medical Imaging Systems and Computer Aids: A Tutorial Review. Acad Radiol. 2007;14:723–48.PubMedCrossRef Wagner RF, Metz CE, Campbell G. Assessment of Medical Imaging Systems and Computer Aids: A Tutorial Review. Acad Radiol. 2007;14:723–48.PubMedCrossRef
25.
go back to reference DeLong ER, DeLong DM, Clarke Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics. 1988;44(3):837–45.PubMedCrossRef DeLong ER, DeLong DM, Clarke Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics. 1988;44(3):837–45.PubMedCrossRef
26.
go back to reference Pepe MS. The statistical evaluation of medical tests for classification and prediction. Oxford Univ. Press;2003:107. Pepe MS. The statistical evaluation of medical tests for classification and prediction. Oxford Univ. Press;2003:107.
28.
go back to reference Hosmer DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression, 3rd Edition. Wiley;2013:173–182. Hosmer DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression, 3rd Edition. Wiley;2013:173–182.
29.
go back to reference Chen W, Samuelson FW. The average receiver operating characteristic curve in multireader multicase imaging studies. British Journal of Radiology. 2014;87:20140016.PubMedPubMedCentralCrossRef Chen W, Samuelson FW. The average receiver operating characteristic curve in multireader multicase imaging studies. British Journal of Radiology. 2014;87:20140016.PubMedPubMedCentralCrossRef
Metadata
Title
Classification of follicular lymphoma: the effect of computer aid on pathologists grading
Authors
Mohammad Faizal Ahmad Fauzi
Michael Pennell
Berkman Sahiner
Weijie Chen
Arwa Shana’ah
Jessica Hemminger
Alejandro Gru
Habibe Kurt
Michael Losos
Amy Joehlin-Price
Christina Kavran
Stephen M. Smith
Nicholas Nowacki
Sharmeen Mansor
Gerard Lozanski
Metin N. Gurcan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2015
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-015-0235-6

Other articles of this Issue 1/2015

BMC Medical Informatics and Decision Making 1/2015 Go to the issue