Skip to main content
Top
Published in: Clinical and Translational Oncology 7/2019

Open Access 01-07-2019 | Research Article

Citron kinase (CIT-K) promotes aggressiveness and tumorigenesis of breast cancer cells in vitro and in vivo: preliminary study of the underlying mechanism

Authors: D. Meng, Q. Yu, L. Feng, M. Luo, S. Shao, S. Huang, G. Wang, X. Jing, Z. Tong, X. Zhao, R. Liu

Published in: Clinical and Translational Oncology | Issue 7/2019

Login to get access

Abstract

Objectives

Citron kinase (CIT-K), as a key Rho effector, functions to maintain proper structure of the midbody during cell mitosis. This study assessed CIT-K expression and its role in breast cancer cells.

Methods

Paraffin-embedded breast cancer and para-tumor tissues from 43 invasive breast cancer patients and 33 normal mammary glands were collected for immunohistochemistry. CIT-K expression knockdown was achieved using lentivirus carrying CIT-K shRNA in a wide range of breast cancer cell lines. Cells were then subjected to Western blot, qRT-PCR, cell proliferation, colony formation, transwell, and flow cytometric assays. The tumorigenicity of CIT-K knocked-down breast cancer cells was assessed using the nude mouse xenograft assay. Microarray analysis was performed to elucidate the underlying gene regulation after CIT-K silencing.

Results

CIT-K protein was overexpressed in breast cancer tissues, which is associated with advanced tumor stage, HER-2 expression and Ki-67 expression, whereas knockdown of CIT-K expression reduced breast cancer cell proliferation and colony formation, but promoted tumor cell apoptosis and cell-cycle arrest. Knockdown of CIT-K expression also inhibited breast cancer cell migration and invasion capacity. Moreover, CIT-K knockdown suppressed the tumorigenicity of breast cancer cells in nude mice. Molecularly, the expression of a variety of signaling genes, such as cyclin D1, EGFR, JAK1, TGF-α, PTK2, RAF1, RALB, SOS1, mTOR, and PTGS2, were altered after CIT-K knockdown.

Conclusions

This study demonstrated that CIT-K is associated with aggressive breast cancer behavior and targeting CIT-K may be a novel strategy for the future control of breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef
2.
go back to reference Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.CrossRefPubMed Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.CrossRefPubMed
3.
go back to reference Núñez C, Capelo JL, Igrejas G, Alfonso A, Botana LM, Lodeiro C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials. 2016;97:34–50.CrossRefPubMed Núñez C, Capelo JL, Igrejas G, Alfonso A, Botana LM, Lodeiro C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials. 2016;97:34–50.CrossRefPubMed
4.
go back to reference Eggert US, Mitchison TJ, Field CM. Animal cytokinesis: from parts list to mechanisms. Annu Rev Biochem. 2016;75:543–66.CrossRef Eggert US, Mitchison TJ, Field CM. Animal cytokinesis: from parts list to mechanisms. Annu Rev Biochem. 2016;75:543–66.CrossRef
5.
go back to reference Sagona AP, Stenmark H. Cytokinesis and cancer. FEBS Let. 2010;584:2652–61.CrossRef Sagona AP, Stenmark H. Cytokinesis and cancer. FEBS Let. 2010;584:2652–61.CrossRef
7.
go back to reference McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13:528–38.CrossRefPubMedPubMedCentral McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13:528–38.CrossRefPubMedPubMedCentral
9.
go back to reference Ikezoe T, Yang J, Nishioka C, Takezaki Y, Tasaka T, Togitani K. A novel treatment strategy targeting polo-like kinase 1 in hematological malignancies. Cancer Res. 2009;23:1564–76. Ikezoe T, Yang J, Nishioka C, Takezaki Y, Tasaka T, Togitani K. A novel treatment strategy targeting polo-like kinase 1 in hematological malignancies. Cancer Res. 2009;23:1564–76.
10.
go back to reference Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell. 2009;136:473–84.CrossRefPubMed Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell. 2009;136:473–84.CrossRefPubMed
11.
go back to reference Li CC, Chu HY, Yang CW, Chou CK, Tsai TF. Aurora-A overexpression in mouse liver causes p53-dependent premitotic arrest during liver regeneration. Mol Cancer Res. 2009;7:678–88.CrossRefPubMed Li CC, Chu HY, Yang CW, Chou CK, Tsai TF. Aurora-A overexpression in mouse liver causes p53-dependent premitotic arrest during liver regeneration. Mol Cancer Res. 2009;7:678–88.CrossRefPubMed
12.
13.
go back to reference Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol. 2013;92:303–15.CrossRefPubMed Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol. 2013;92:303–15.CrossRefPubMed
14.
go back to reference Di Cunto F, Imarisio S, Hirsch E, Broccoli V, Bulfone A, Migheli A. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron. 2000;28:115–27.CrossRefPubMed Di Cunto F, Imarisio S, Hirsch E, Broccoli V, Bulfone A, Migheli A. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron. 2000;28:115–27.CrossRefPubMed
15.
go back to reference Naim V, Imarisio S, Di Cunto F, Gatti M, Bonaccorsi S. Drosophila citron kinase is required for the final steps of cytokinesis. Mol Biol Cell. 2004;15:5053–63.CrossRefPubMedPubMedCentral Naim V, Imarisio S, Di Cunto F, Gatti M, Bonaccorsi S. Drosophila citron kinase is required for the final steps of cytokinesis. Mol Biol Cell. 2004;15:5053–63.CrossRefPubMedPubMedCentral
16.
go back to reference D’Avino PP, Capalbo L. Regulation of midbody formation and function by mitotic kinases. Semin Cell Dev Biol. 2016;53:57–63.CrossRefPubMed D’Avino PP, Capalbo L. Regulation of midbody formation and function by mitotic kinases. Semin Cell Dev Biol. 2016;53:57–63.CrossRefPubMed
17.
go back to reference Bassi ZI, Audusseau M, Riparbelli MG, Callaini G, D’Avino PP. Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc Natl Acad Sci USA. 2013;110:9782–7.CrossRefPubMed Bassi ZI, Audusseau M, Riparbelli MG, Callaini G, D’Avino PP. Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc Natl Acad Sci USA. 2013;110:9782–7.CrossRefPubMed
18.
19.
go back to reference Cunto FD, Imarisio S, Camera P, Boitani C, Altruda F, Silengo L. Essential role of citron kinase in cytokinesis of spermatogenic precursors. J Cell Sci. 2002;115:4819–26.CrossRefPubMed Cunto FD, Imarisio S, Camera P, Boitani C, Altruda F, Silengo L. Essential role of citron kinase in cytokinesis of spermatogenic precursors. J Cell Sci. 2002;115:4819–26.CrossRefPubMed
21.
go back to reference Fu Y, Huang J, Wang KS, Zhang X, Han ZG. RNA interference targeting CITRON can significantly inhibit the proliferation of hepatocellular carcinoma cells. Mol Biol Rep. 2011;38:693–702.CrossRefPubMed Fu Y, Huang J, Wang KS, Zhang X, Han ZG. RNA interference targeting CITRON can significantly inhibit the proliferation of hepatocellular carcinoma cells. Mol Biol Rep. 2011;38:693–702.CrossRefPubMed
22.
go back to reference Ehrlichova M, Mohelnikova-Duchonova B, Hrdy J, Brynychova V, Mrhalova M, Kodet R. The association of taxane resistance genes with the clinical course of ovarian carcinoma. Genomics. 2013;102:96–101.CrossRefPubMed Ehrlichova M, Mohelnikova-Duchonova B, Hrdy J, Brynychova V, Mrhalova M, Kodet R. The association of taxane resistance genes with the clinical course of ovarian carcinoma. Genomics. 2013;102:96–101.CrossRefPubMed
23.
go back to reference Kenzie C, D’Avino PP. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget. 2016;7:87323–41. Kenzie C, D’Avino PP. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget. 2016;7:87323–41.
24.
go back to reference Anastas SB, Mueller D, Semple-Rowland SL, Breunig JJ, Sarkisian MR. Failed cytokinesis of neural progenitors in citron kinase-deficient rats leads to multiciliated neurons. Cereb Cortex. 2011;21:338–44.CrossRefPubMed Anastas SB, Mueller D, Semple-Rowland SL, Breunig JJ, Sarkisian MR. Failed cytokinesis of neural progenitors in citron kinase-deficient rats leads to multiciliated neurons. Cereb Cortex. 2011;21:338–44.CrossRefPubMed
25.
go back to reference Serres MP, Kossatz U, Chi Y, Roberts JM, Malek NP, Besson A. p27(Kip1) controls cytokinesis via the regulation of citron kinase activation. J Clin Invest. 2012;122:844–58.CrossRefPubMedPubMedCentral Serres MP, Kossatz U, Chi Y, Roberts JM, Malek NP, Besson A. p27(Kip1) controls cytokinesis via the regulation of citron kinase activation. J Clin Invest. 2012;122:844–58.CrossRefPubMedPubMedCentral
26.
go back to reference Brynychova V, Ehrlichova M, Hlavac V, Nemcova-Furstova V, Pecha V, Leva J. Genetic and functional analyses do not explain the association of high PRC1 expression with poor survival of breast carcinoma patients. Biomed Pharmacother. 2016;83:857–64.CrossRefPubMed Brynychova V, Ehrlichova M, Hlavac V, Nemcova-Furstova V, Pecha V, Leva J. Genetic and functional analyses do not explain the association of high PRC1 expression with poor survival of breast carcinoma patients. Biomed Pharmacother. 2016;83:857–64.CrossRefPubMed
27.
go back to reference Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14:320–68.CrossRefPubMed Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14:320–68.CrossRefPubMed
28.
go back to reference Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol. 2003;200:290–7.CrossRefPubMed Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol. 2003;200:290–7.CrossRefPubMed
29.
go back to reference Denkert C, von Minckwitz G. Reply to Ki67 in breast cancer: a useful prognostic marker! Ann Oncol. 2014;25:542–3.CrossRefPubMed Denkert C, von Minckwitz G. Reply to Ki67 in breast cancer: a useful prognostic marker! Ann Oncol. 2014;25:542–3.CrossRefPubMed
31.
go back to reference Liu H, Di Cunto F, Imarisio S, Reid LM. Citron kinase is a cell cycle-dependent, nuclear protein required for G2/M transition of hepatocytes. J Biol Chem. 2003;278:2541–8.CrossRefPubMed Liu H, Di Cunto F, Imarisio S, Reid LM. Citron kinase is a cell cycle-dependent, nuclear protein required for G2/M transition of hepatocytes. J Biol Chem. 2003;278:2541–8.CrossRefPubMed
32.
go back to reference Coleman ML, Marshall CJ. A family outing: small GTPases cyclin’ through G1. Nat Cell Biol. 2001;3:E250–1.CrossRefPubMed Coleman ML, Marshall CJ. A family outing: small GTPases cyclin’ through G1. Nat Cell Biol. 2001;3:E250–1.CrossRefPubMed
33.
go back to reference Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.CrossRef Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.CrossRef
Metadata
Title
Citron kinase (CIT-K) promotes aggressiveness and tumorigenesis of breast cancer cells in vitro and in vivo: preliminary study of the underlying mechanism
Authors
D. Meng
Q. Yu
L. Feng
M. Luo
S. Shao
S. Huang
G. Wang
X. Jing
Z. Tong
X. Zhao
R. Liu
Publication date
01-07-2019
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 7/2019
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-018-02003-9

Other articles of this Issue 7/2019

Clinical and Translational Oncology 7/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine