Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Research article

CircPRKD3/miR-6783-3p responds to mechanical force to facilitate the osteogenesis of stretched periodontal ligament stem cells

Authors: Jiani Liu, Rui Liu, Hong Wang, Zijie Zhang, Jixiao Wang, Fulan Wei

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Background

The mechanotransduction mechanisms by which cells regulate tissue remodeling are not fully deciphered. Circular RNAs (circRNAs) are crucial to various physiological processes, including cell cycle, differentiation, and polarization. However, the effects of mechanical force on circRNAs and the role of circRNAs in the mechanobiology of differentiation and remodeling in stretched periodontal ligament stem cells (PDLSCs) remain unclear. This article aims to explore the osteogenic function of mechanically sensitive circular RNA protein kinase D3 (circPRKD3) and elucidate its underlying mechanotransduction mechanism.

Materials and methods

PDLSCs were elongated with 8% stretch at 0.5 Hz for 24 h using the Flexcell® FX-6000™ Tension System. CircPRKD3 was knockdown or overexpressed with lentiviral constructs or plasmids. The downstream molecules of circPRKD3 were predicted by bioinformatics analysis. The osteogenic effect of related molecules was evaluated by quantitative real-time PCR (qRT‐PCR) and western blot.

Results

Mechanical force enhanced the osteogenesis of PDLSCs and increased the expression of circPRKD3. Knockdown of circPRKD3 hindered PDLSCs from osteogenesis under mechanical force, while overexpression of circPRKD3 promoted the early osteogenesis process of PDLSCs. With bioinformatics analysis and multiple software predictions, we identified hsa-miR-6783-3p could act as the sponge of circPRKD3 to indirectly regulate osteogenic differentiation of mechanically stimulated PDLSCs.

Conclusions

Our results first suggested that both circPRKD3 and hsa-miR-6783-3p could enhance osteogenesis of stretched PDLSCs. Furthermore, hsa-miR-6783-3p could sponge circPRKD3 to indirectly regulate RUNX2 during the periodontal tissue remodeling process in orthodontic treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li M, Zhang C, Yang Y. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: a systematic review of in vitro studies. Bone Joint Res. 2019;8(1):19–31.PubMedPubMedCentralCrossRef Li M, Zhang C, Yang Y. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: a systematic review of in vitro studies. Bone Joint Res. 2019;8(1):19–31.PubMedPubMedCentralCrossRef
2.
go back to reference Jin SS, He DQ, Wang Y, Zhang T, Yu HJ, Li ZX, et al. Mechanical force modulates periodontal ligament stem cell characteristics during bone remodelling via TRPV4. Cell Prolif. 2020;53(10):e12912.PubMedPubMedCentralCrossRef Jin SS, He DQ, Wang Y, Zhang T, Yu HJ, Li ZX, et al. Mechanical force modulates periodontal ligament stem cell characteristics during bone remodelling via TRPV4. Cell Prolif. 2020;53(10):e12912.PubMedPubMedCentralCrossRef
3.
go back to reference Liu M, Zhang H, Li Y, Wang S. Noncoding RNAs interplay in Ovarian Cancer Therapy and Drug Resistance. Cancer biotherapy & radiopharmaceuticals; 2022. Liu M, Zhang H, Li Y, Wang S. Noncoding RNAs interplay in Ovarian Cancer Therapy and Drug Resistance. Cancer biotherapy & radiopharmaceuticals; 2022.
4.
go back to reference Amorim M, Salta S, Henrique R, Jerónimo C. Decoding the usefulness of non-coding RNAs as breast cancer markers. J Translational Med. 2016;14:265.CrossRef Amorim M, Salta S, Henrique R, Jerónimo C. Decoding the usefulness of non-coding RNAs as breast cancer markers. J Translational Med. 2016;14:265.CrossRef
5.
go back to reference Ali T, Grote P. Beyond the RNA-dependent function of LncRNA genes. eLife. 2020;9. Ali T, Grote P. Beyond the RNA-dependent function of LncRNA genes. eLife. 2020;9.
6.
go back to reference Warner WA, Spencer DH, Trissal M, White BS, Helton N, Ley TJ, et al. Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv. 2018;2(2):151–63.PubMedPubMedCentralCrossRef Warner WA, Spencer DH, Trissal M, White BS, Helton N, Ley TJ, et al. Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv. 2018;2(2):151–63.PubMedPubMedCentralCrossRef
7.
go back to reference Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene. 2018;37(3):277–85.PubMedCrossRef Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene. 2018;37(3):277–85.PubMedCrossRef
8.
go back to reference Ghafouri-Fard S, Poulet C, Malaise M, Abak A, Mahmud Hussen B, Taheriazam A, et al. The emerging role of non-coding RNAs in Osteoarthritis. Front Immunol. 2021;12:773171.PubMedPubMedCentralCrossRef Ghafouri-Fard S, Poulet C, Malaise M, Abak A, Mahmud Hussen B, Taheriazam A, et al. The emerging role of non-coding RNAs in Osteoarthritis. Front Immunol. 2021;12:773171.PubMedPubMedCentralCrossRef
9.
go back to reference Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (London England). 2021;41(2):109–20.CrossRef Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (London England). 2021;41(2):109–20.CrossRef
10.
go back to reference Li M, Zhang Z, Gu X, Jin Y, Feng C, Yang S, et al. MicroRNA-21 affects mechanical force-induced midpalatal suture remodelling. Cell Prolif. 2020;53(1):e12697.PubMedCrossRef Li M, Zhang Z, Gu X, Jin Y, Feng C, Yang S, et al. MicroRNA-21 affects mechanical force-induced midpalatal suture remodelling. Cell Prolif. 2020;53(1):e12697.PubMedCrossRef
11.
go back to reference Zhang Z, He Q, Yang S, Zhao X, Li X, Wei F. Mechanical force-sensitive lncRNA SNHG8 inhibits osteogenic differentiation by regulating EZH2 in hPDLSCs. Cell Signal. 2022;93:110285.PubMedCrossRef Zhang Z, He Q, Yang S, Zhao X, Li X, Wei F. Mechanical force-sensitive lncRNA SNHG8 inhibits osteogenic differentiation by regulating EZH2 in hPDLSCs. Cell Signal. 2022;93:110285.PubMedCrossRef
12.
go back to reference Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.PubMedCrossRef Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.PubMedCrossRef
13.
go back to reference Wang H, Feng C, Jin Y, Tan W, Wei F. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells. J Cell Physiol. 2019;234(7):10166–77.PubMedCrossRef Wang H, Feng C, Jin Y, Tan W, Wei F. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells. J Cell Physiol. 2019;234(7):10166–77.PubMedCrossRef
14.
go back to reference Zhong W, Li X, Pathak JL, Chen L, Cao W, Zhu M, et al. Dicalcium silicate microparticles modulate the differential expression of circRNAs and mRNAs in BMSCs and promote osteogenesis via circ_1983-miR-6931-Gas7 interaction. Biomaterials Sci. 2020;8(13):3664–77.CrossRef Zhong W, Li X, Pathak JL, Chen L, Cao W, Zhu M, et al. Dicalcium silicate microparticles modulate the differential expression of circRNAs and mRNAs in BMSCs and promote osteogenesis via circ_1983-miR-6931-Gas7 interaction. Biomaterials Sci. 2020;8(13):3664–77.CrossRef
15.
go back to reference Gu X, Li M, Jin Y, Liu D, Wei F. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet. 2017;18(1):100.PubMedPubMedCentralCrossRef Gu X, Li M, Jin Y, Liu D, Wei F. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet. 2017;18(1):100.PubMedPubMedCentralCrossRef
16.
go back to reference Wei F, Liu D, Feng C, Zhang F, Yang S, Hu Y, et al. microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells. Stem Cells Dev. 2015;24(3):312–9.PubMedCrossRef Wei F, Liu D, Feng C, Zhang F, Yang S, Hu Y, et al. microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells. Stem Cells Dev. 2015;24(3):312–9.PubMedCrossRef
17.
go back to reference Liu Y, Zhou Y, Ma X, Chen L. Inhibition lysosomal degradation of Clusterin by protein kinase D3 promotes triple-negative breast Cancer Tumor Growth. Advanced science (Weinheim, Baden-Wurttemberg. Germany). 2021;8(4):2003205. Liu Y, Zhou Y, Ma X, Chen L. Inhibition lysosomal degradation of Clusterin by protein kinase D3 promotes triple-negative breast Cancer Tumor Growth. Advanced science (Weinheim, Baden-Wurttemberg. Germany). 2021;8(4):2003205.
18.
go back to reference Zhang S, Liu H, Yin M, Pei X, Hausser A, Ishikawa E, et al. Deletion of protein kinase D3 promotes liver fibrosis in mice. Hepatology (Baltimore MD). 2020;72(5):1717–34.PubMedCrossRef Zhang S, Liu H, Yin M, Pei X, Hausser A, Ishikawa E, et al. Deletion of protein kinase D3 promotes liver fibrosis in mice. Hepatology (Baltimore MD). 2020;72(5):1717–34.PubMedCrossRef
19.
go back to reference Baker J, Falconer AMD, Wilkinson DJ, Europe-Finner GN, Litherland GJ, Rowan AD. Protein kinase D3 modulates MMP1 and MMP13 expression in human chondrocytes. PLoS ONE. 2018;13(4):e0195864.PubMedPubMedCentralCrossRef Baker J, Falconer AMD, Wilkinson DJ, Europe-Finner GN, Litherland GJ, Rowan AD. Protein kinase D3 modulates MMP1 and MMP13 expression in human chondrocytes. PLoS ONE. 2018;13(4):e0195864.PubMedPubMedCentralCrossRef
20.
go back to reference Leightner AC, Mello Guimaraes Meyers C, Evans MD, Mansky KC, Gopalakrishnan R, Jensen ED. Regulation of Osteoclast differentiation at multiple stages by protein kinase D Family Kinases. Int J Mol Sci. 2020;21(3). Leightner AC, Mello Guimaraes Meyers C, Evans MD, Mansky KC, Gopalakrishnan R, Jensen ED. Regulation of Osteoclast differentiation at multiple stages by protein kinase D Family Kinases. Int J Mol Sci. 2020;21(3).
21.
go back to reference He Q, Yang S, Gu X, Li M, Wang C, Wei F. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A. Cell Death Dis. 2018;9(5):455.PubMedPubMedCentralCrossRef He Q, Yang S, Gu X, Li M, Wang C, Wei F. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A. Cell Death Dis. 2018;9(5):455.PubMedPubMedCentralCrossRef
22.
go back to reference Liu J, Wang H, Zhang L, Li X, Ding X, Ding G et al. Periodontal ligament stem cells promote polarization of M2 macrophages. J Leukoc Biol. 2022. Liu J, Wang H, Zhang L, Li X, Ding X, Ding G et al. Periodontal ligament stem cells promote polarization of M2 macrophages. J Leukoc Biol. 2022.
23.
24.
go back to reference Sasaki F, Hayashi M, Ono T, Nakashima T. The regulation of RANKL by mechanical force. J Bone Miner Metab. 2021;39(1):34–44.PubMedCrossRef Sasaki F, Hayashi M, Ono T, Nakashima T. The regulation of RANKL by mechanical force. J Bone Miner Metab. 2021;39(1):34–44.PubMedCrossRef
25.
go back to reference Jeon HH, Teixeira H, Tsai A. Mechanistic insight into Orthodontic Tooth Movement Based on Animal Studies: a critical review. J Clin Med. 2021;10(8). Jeon HH, Teixeira H, Tsai A. Mechanistic insight into Orthodontic Tooth Movement Based on Animal Studies: a critical review. J Clin Med. 2021;10(8).
26.
go back to reference Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45(8 Pt 2):1353–8.PubMed Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45(8 Pt 2):1353–8.PubMed
27.
go back to reference Chaushu S, Klein Y, Mandelboim O, Barenholz Y, Fleissig O. Immune Changes Induced by Orthodontic Forces: a critical review. J Dent Res. 2022;101(1):11–20.PubMedCrossRef Chaushu S, Klein Y, Mandelboim O, Barenholz Y, Fleissig O. Immune Changes Induced by Orthodontic Forces: a critical review. J Dent Res. 2022;101(1):11–20.PubMedCrossRef
28.
29.
go back to reference Wang H, Feng C, Li M, Zhang Z, Liu J, Wei F. Analysis of lncRNAs-miRNAs-mRNAs networks in periodontal ligament stem cells under mechanical force. Oral Dis. 2020. Wang H, Feng C, Li M, Zhang Z, Liu J, Wei F. Analysis of lncRNAs-miRNAs-mRNAs networks in periodontal ligament stem cells under mechanical force. Oral Dis. 2020.
30.
go back to reference Liu Y, Liu H, Li Y, Mao R, Yang H, Zhang Y, et al. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis. Theranostics. 2020;10(10):4705–19.PubMedPubMedCentralCrossRef Liu Y, Liu H, Li Y, Mao R, Yang H, Zhang Y, et al. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis. Theranostics. 2020;10(10):4705–19.PubMedPubMedCentralCrossRef
31.
go back to reference Yao MD, Jiang Q, Ma Y, Zhu Y, Zhang QY, Shi ZH, et al. Targeting circular RNA-MET for anti-angiogenesis treatment via inhibiting endothelial tip cell specialization. Mol Therapy: J Am Soc Gene Therapy. 2022;30(3):1252–64.CrossRef Yao MD, Jiang Q, Ma Y, Zhu Y, Zhang QY, Shi ZH, et al. Targeting circular RNA-MET for anti-angiogenesis treatment via inhibiting endothelial tip cell specialization. Mol Therapy: J Am Soc Gene Therapy. 2022;30(3):1252–64.CrossRef
32.
go back to reference Liu C, Liu AS, Zhong D, Wang CG, Yu M, Zhang HW, et al. Circular RNA AFF4 modulates osteogenic differentiation in BM-MSCs by activating SMAD1/5 pathway through miR-135a-5p/FNDC5/Irisin axis. Cell Death Dis. 2021;12(7):631.PubMedPubMedCentralCrossRef Liu C, Liu AS, Zhong D, Wang CG, Yu M, Zhang HW, et al. Circular RNA AFF4 modulates osteogenic differentiation in BM-MSCs by activating SMAD1/5 pathway through miR-135a-5p/FNDC5/Irisin axis. Cell Death Dis. 2021;12(7):631.PubMedPubMedCentralCrossRef
33.
go back to reference Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 2021;25(9):4501–15.PubMedPubMedCentralCrossRef Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 2021;25(9):4501–15.PubMedPubMedCentralCrossRef
34.
go back to reference Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci. 2020;77(9):1661–80.PubMedCrossRef Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci. 2020;77(9):1661–80.PubMedCrossRef
35.
go back to reference Durand N, Borges S, Storz P. Protein Kinase D Enzymes as regulators of EMT and Cancer Cell Invasion. J Clin Med. 2016;5(2). Durand N, Borges S, Storz P. Protein Kinase D Enzymes as regulators of EMT and Cancer Cell Invasion. J Clin Med. 2016;5(2).
36.
go back to reference Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone. 2023;172:116759.PubMedCrossRef Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone. 2023;172:116759.PubMedCrossRef
37.
go back to reference Wang H, Feng C, Wang M, Yang S, Wei F. Circular RNAs: Diversity of Functions and a Regulatory Nova in oral medicine: a Pilot Review. Cell Transplant. 2019;28(7):819–30.PubMedPubMedCentralCrossRef Wang H, Feng C, Wang M, Yang S, Wei F. Circular RNAs: Diversity of Functions and a Regulatory Nova in oral medicine: a Pilot Review. Cell Transplant. 2019;28(7):819–30.PubMedPubMedCentralCrossRef
38.
go back to reference Su L, Li R, Zhang Z, Liu J, Du J, Wei H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer’s disease. Ageing Res Rev. 2022;73:101497.PubMedCrossRef Su L, Li R, Zhang Z, Liu J, Du J, Wei H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer’s disease. Ageing Res Rev. 2022;73:101497.PubMedCrossRef
39.
go back to reference Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 2019;18(1):71.PubMedPubMedCentralCrossRef Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 2019;18(1):71.PubMedPubMedCentralCrossRef
40.
go back to reference Su H, Tao T, Yang Z, Kang X, Zhang X, Kang D, et al. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Mol Cancer. 2019;18(1):27.PubMedPubMedCentralCrossRef Su H, Tao T, Yang Z, Kang X, Zhang X, Kang D, et al. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Mol Cancer. 2019;18(1):27.PubMedPubMedCentralCrossRef
41.
go back to reference Zhang Z, Moon R, Thorne JL, Moore JB. NAFLD and vitamin D: evidence for intersection of microRNA-regulated pathways. Nutr Res Rev. 2021:1–20. Zhang Z, Moon R, Thorne JL, Moore JB. NAFLD and vitamin D: evidence for intersection of microRNA-regulated pathways. Nutr Res Rev. 2021:1–20.
42.
go back to reference Yao Y, Hua Q, Zhou Y. CircRNA has_circ_0006427 suppresses the progression of lung adenocarcinoma by regulating miR-6783-3p/DKK1 axis and inactivating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 2019;508(1):37–45.PubMedCrossRef Yao Y, Hua Q, Zhou Y. CircRNA has_circ_0006427 suppresses the progression of lung adenocarcinoma by regulating miR-6783-3p/DKK1 axis and inactivating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 2019;508(1):37–45.PubMedCrossRef
43.
go back to reference Wu KL, Tsai YM, Huang YC, Wu YY, Chang CY, Liu YW, et al. LINC02323 facilitates development of lung squamous cell carcinoma by miRNA sponge and RBP dysregulation and links to poor prognosis. Thorac cancer. 2023;14(4):407–18.PubMedCrossRef Wu KL, Tsai YM, Huang YC, Wu YY, Chang CY, Liu YW, et al. LINC02323 facilitates development of lung squamous cell carcinoma by miRNA sponge and RBP dysregulation and links to poor prognosis. Thorac cancer. 2023;14(4):407–18.PubMedCrossRef
44.
go back to reference Sharma AR, Vohra M, Shukla V, Guddattu V, Razak Uk A, Shetty R, et al. Coding SNPs in hsa-mir-1343-3p and hsa-mir-6783-3p target sites of CYP2C19 modulates clopidogrel response in individuals with cardiovascular diseases. Life Sci. 2020;245:117364.PubMedCrossRef Sharma AR, Vohra M, Shukla V, Guddattu V, Razak Uk A, Shetty R, et al. Coding SNPs in hsa-mir-1343-3p and hsa-mir-6783-3p target sites of CYP2C19 modulates clopidogrel response in individuals with cardiovascular diseases. Life Sci. 2020;245:117364.PubMedCrossRef
45.
go back to reference Haque S, Harries LW. Circular RNAs (circRNAs) in Health and Disease. Genes. 2017;8(12). Haque S, Harries LW. Circular RNAs (circRNAs) in Health and Disease. Genes. 2017;8(12).
46.
go back to reference Yang R, Xing L, Zheng X, Sun Y, Wang X, Chen J. The circRNA circAGFG1 acts as a sponge of mir-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression. Mol Cancer. 2019;18(1):4.PubMedPubMedCentralCrossRef Yang R, Xing L, Zheng X, Sun Y, Wang X, Chen J. The circRNA circAGFG1 acts as a sponge of mir-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression. Mol Cancer. 2019;18(1):4.PubMedPubMedCentralCrossRef
47.
go back to reference Li J, Huang C, Zou Y, Ye J, Yu J, Gui Y. CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p. Mol Cancer. 2020;19(1):103.PubMedPubMedCentralCrossRef Li J, Huang C, Zou Y, Ye J, Yu J, Gui Y. CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p. Mol Cancer. 2020;19(1):103.PubMedPubMedCentralCrossRef
48.
go back to reference Peng F, Gong W, Li S, Yin B, Zhao C, Liu W, et al. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to Renal Fibrosis in Diabetic Nephropathy. Diabetes. 2021;70(2):603–15.PubMedCrossRef Peng F, Gong W, Li S, Yin B, Zhao C, Liu W, et al. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to Renal Fibrosis in Diabetic Nephropathy. Diabetes. 2021;70(2):603–15.PubMedCrossRef
49.
go back to reference Xu L, Feng X, Hao X, Wang P, Zhang Y, Zheng X, et al. CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth. J Experimental Clin cancer Research: CR. 2019;38(1):98.PubMedCentralCrossRef Xu L, Feng X, Hao X, Wang P, Zhang Y, Zheng X, et al. CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth. J Experimental Clin cancer Research: CR. 2019;38(1):98.PubMedCentralCrossRef
50.
go back to reference Chen LH, Wang LP, Ma XQ. Circ_SPECC1 enhances the inhibition of miR-526b on downstream KDM4A/YAP1 pathway to regulate the growth and invasion of gastric cancer cells. Biochem Biophys Res Commun. 2019;517(2):253–9.PubMedCrossRef Chen LH, Wang LP, Ma XQ. Circ_SPECC1 enhances the inhibition of miR-526b on downstream KDM4A/YAP1 pathway to regulate the growth and invasion of gastric cancer cells. Biochem Biophys Res Commun. 2019;517(2):253–9.PubMedCrossRef
Metadata
Title
CircPRKD3/miR-6783-3p responds to mechanical force to facilitate the osteogenesis of stretched periodontal ligament stem cells
Authors
Jiani Liu
Rui Liu
Hong Wang
Zijie Zhang
Jixiao Wang
Fulan Wei
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04727-7

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue