Skip to main content
Top
Published in: Respiratory Research 1/2022

01-12-2022 | Chronic Obstructive Lung Disease | Research

Protein interaction networks provide insight into fetal origins of chronic obstructive pulmonary disease

Authors: Annika Röhl, Seung Han Baek, Priyadarshini Kachroo, Jarrett D. Morrow, Kelan Tantisira, Edwin K. Silverman, Scott T. Weiss, Amitabh Sharma, Kimberly Glass, Dawn L. DeMeo

Published in: Respiratory Research | Issue 1/2022

Login to get access

Abstract

Background

Chronic obstructive pulmonary disease (COPD) is a leading cause of death in adults that may have origins in early lung development. It is a complex disease, influenced by multiple factors including genetic variants and environmental factors. Maternal smoking during pregnancy may influence the risk for diseases during adulthood, potentially through epigenetic modifications including methylation.

Methods

In this work, we explore the fetal origins of COPD by utilizing lung DNA methylation marks associated with in utero smoke (IUS) exposure, and evaluate the network relationships between methylomic and transcriptomic signatures associated with adult lung tissue from former smokers with and without COPD. To identify potential pathobiological mechanisms that may link fetal lung, smoke exposure and adult lung disease, we study the interactions (physical and functional) of identified genes using protein–protein interaction networks.

Results

We build IUS-exposure and COPD modules, which identify connected subnetworks linking fetal lung smoke exposure to adult COPD. Studying the relationships and connectivity among the different modules for fetal smoke exposure and adult COPD, we identify enriched pathways, including the AGE-RAGE and focal adhesion pathways.

Conclusions

The modules identified in our analysis add new and potentially important insights to understanding the early life molecular perturbations related to the pathogenesis of COPD. We identify AGE-RAGE and focal adhesion as two biologically plausible pathways that may reveal lung developmental contributions to COPD. We were not only able to identify meaningful modules but were also able to study interconnections between smoke exposure and lung disease, augmenting our knowledge about the fetal origins of COPD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Xu J, Murphy SL, Kochanek KD, Bastian B, Arias E. Deaths: final data for 2016 (2018). Xu J, Murphy SL, Kochanek KD, Bastian B, Arias E. Deaths: final data for 2016 (2018).
3.
go back to reference Khakban A, Sin DD, FitzGerald JM, McManus BM, Ng R, Hollander Z, Sadatsafavi M. The projected epidemic of chronic obstructive pulmonary disease hospitalizations over the next 15 years. A population-based perspective. Am J Respir Crit Care Med. 2017;195(3):287–91.PubMed Khakban A, Sin DD, FitzGerald JM, McManus BM, Ng R, Hollander Z, Sadatsafavi M. The projected epidemic of chronic obstructive pulmonary disease hospitalizations over the next 15 years. A population-based perspective. Am J Respir Crit Care Med. 2017;195(3):287–91.PubMed
4.
go back to reference Hardin M, Silverman EK, Barr RG, Hansel NN, Schroeder JD, Make BJ, Crapo JD, Hersh CP. The clinical features of the overlap between COPD and asthma. Respir Res. 2011;12(1):1–8. Hardin M, Silverman EK, Barr RG, Hansel NN, Schroeder JD, Make BJ, Crapo JD, Hersh CP. The clinical features of the overlap between COPD and asthma. Respir Res. 2011;12(1):1–8.
5.
go back to reference Martinez FD. The origins of asthma and chronic obstructive pulmonary disease in early life. Proc Am Thorac Soc. 2009;6(3):272–7.PubMedPubMedCentral Martinez FD. The origins of asthma and chronic obstructive pulmonary disease in early life. Proc Am Thorac Soc. 2009;6(3):272–7.PubMedPubMedCentral
6.
go back to reference Bush A. Lung development and aging. Ann Am Thorac Soc. 2016;13(Supplement 5):S438–46.PubMed Bush A. Lung development and aging. Ann Am Thorac Soc. 2016;13(Supplement 5):S438–46.PubMed
7.
go back to reference Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet. 2015;385(9971):899–909.PubMed Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet. 2015;385(9971):899–909.PubMed
8.
go back to reference Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax. 2014;69(9):805–10.PubMed Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax. 2014;69(9):805–10.PubMed
9.
go back to reference Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, Wilcox AJ. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2014;122(10):1147–53.PubMedPubMedCentral Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, Wilcox AJ. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2014;122(10):1147–53.PubMedPubMedCentral
10.
go back to reference Lee KW, Richmond R, Hu P, French L, Shin J, Bourdon C, Reischl E, Waldenberger M, Zeilinger S, Gaunt T, McArdle W. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect. 2015;123(2):193–9.PubMed Lee KW, Richmond R, Hu P, French L, Shin J, Bourdon C, Reischl E, Waldenberger M, Zeilinger S, Gaunt T, McArdle W. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect. 2015;123(2):193–9.PubMed
11.
go back to reference Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Küpers LK. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–96.PubMedPubMedCentral Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Küpers LK. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–96.PubMedPubMedCentral
12.
go back to reference Richmond RC, Simpkin AJ, Woodward G, Gaunt TR, Lyttleton O, McArdle WL, Ring SM, Smith AD, Timpson NJ, Tilling K, Davey Smith G. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet. 2015;24(8):2201–17.PubMed Richmond RC, Simpkin AJ, Woodward G, Gaunt TR, Lyttleton O, McArdle WL, Ring SM, Smith AD, Timpson NJ, Tilling K, Davey Smith G. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet. 2015;24(8):2201–17.PubMed
13.
go back to reference Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, Huang Z, Hoyo C, Midttun Ø, Cupul-Uicab LA, Ueland PM. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31.PubMedPubMedCentral Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, Huang Z, Hoyo C, Midttun Ø, Cupul-Uicab LA, Ueland PM. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31.PubMedPubMedCentral
14.
go back to reference Narang I, Bush A. Early origins of chronic obstructive pulmonary disease. Semin Fetal Neonatal Med. 2012;17(2):112–8.PubMed Narang I, Bush A. Early origins of chronic obstructive pulmonary disease. Semin Fetal Neonatal Med. 2012;17(2):112–8.PubMed
15.
go back to reference Martinez FJ, Han MK, Allinson JP, Barr RG, Boucher RC, Calverley PM, Celli BR, Christenson SA, Crystal RG, Fagerås M, Freeman CM. At the root: defining and halting progression of early chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;197(12):1540–51.PubMedPubMedCentral Martinez FJ, Han MK, Allinson JP, Barr RG, Boucher RC, Calverley PM, Celli BR, Christenson SA, Crystal RG, Fagerås M, Freeman CM. At the root: defining and halting progression of early chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;197(12):1540–51.PubMedPubMedCentral
16.
go back to reference Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.PubMedPubMedCentral Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.PubMedPubMedCentral
17.
go back to reference Sharma A, Menche J, Huang CC, Ort T, Zhou X, Kitsak M, Sahni N, Thibault D, Voung L, Guo F, Ghiassian SD. A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Hum Mol Genet. 2015;24(11):3005–20.PubMedPubMedCentral Sharma A, Menche J, Huang CC, Ort T, Zhou X, Kitsak M, Sahni N, Thibault D, Voung L, Guo F, Ghiassian SD. A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Hum Mol Genet. 2015;24(11):3005–20.PubMedPubMedCentral
19.
go back to reference Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics. 2005;21(23):4205–8.PubMed Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics. 2005;21(23):4205–8.PubMed
20.
go back to reference Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein–protein interactions. J Med Genet. 2006;43(8):691–8.PubMedPubMedCentral Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein–protein interactions. J Med Genet. 2006;43(8):691–8.PubMedPubMedCentral
22.
go back to reference Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci. 2007;104(21):8685–90.PubMedPubMedCentral Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci. 2007;104(21):8685–90.PubMedPubMedCentral
23.
go back to reference Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177–86.PubMedPubMedCentral Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177–86.PubMedPubMedCentral
24.
go back to reference Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402(6761):C47–52.PubMed Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402(6761):C47–52.PubMed
25.
go back to reference Halu A, Liu S, Baek SH, Hobbs BD, Hunninghake GM, Cho MH, Silverman EK, Sharma A. Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Hum Mol Genet. 2019;28(14):2352–64.PubMedPubMedCentral Halu A, Liu S, Baek SH, Hobbs BD, Hunninghake GM, Cho MH, Silverman EK, Sharma A. Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Hum Mol Genet. 2019;28(14):2352–64.PubMedPubMedCentral
26.
go back to reference McDonald MLN, Mattheisen M, Cho MH, Liu YY, Harshfield B, Hersh CP, Bakke P, Gulsvik A, Lange C, Beaty TH, Silverman EK. Beyond GWAS in COPD: probing the landscape between gene-set associations, genome-wide associations and protein-protein interaction networks. Hum Hered. 2014;78(3–4):131–9.PubMed McDonald MLN, Mattheisen M, Cho MH, Liu YY, Harshfield B, Hersh CP, Bakke P, Gulsvik A, Lange C, Beaty TH, Silverman EK. Beyond GWAS in COPD: probing the landscape between gene-set associations, genome-wide associations and protein-protein interaction networks. Hum Hered. 2014;78(3–4):131–9.PubMed
27.
go back to reference Maiorino E, Baek SH, Guo F, Zhou X, Kothari PH, Silverman EK, Barabási AL, Weiss ST, Raby BA, Sharma A. Discovering the genes mediating the interactions between chronic respiratory diseases in the human interactome. Nat Commun. 2020;11(1):1–14. Maiorino E, Baek SH, Guo F, Zhou X, Kothari PH, Silverman EK, Barabási AL, Weiss ST, Raby BA, Sharma A. Discovering the genes mediating the interactions between chronic respiratory diseases in the human interactome. Nat Commun. 2020;11(1):1–14.
28.
go back to reference Paci P, Fiscon G, Conte F, Licursi V, Morrow J, Hersh C, Cho M, Castaldi P, Glass K, Silverman EK, Farina L. Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Sci Rep. 2020;10(1):1–18. Paci P, Fiscon G, Conte F, Licursi V, Morrow J, Hersh C, Cho M, Castaldi P, Glass K, Silverman EK, Farina L. Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Sci Rep. 2020;10(1):1–18.
29.
go back to reference Mcdonough J, Vanaudenaerde B, Wuyts W, Kaminski, N. Consensus network analysis reveals pathways associated with lung function decline in both COPD and IPF. Eur Respiratory Soc. 2017. Mcdonough J, Vanaudenaerde B, Wuyts W, Kaminski, N. Consensus network analysis reveals pathways associated with lung function decline in both COPD and IPF. Eur Respiratory Soc. 2017.
30.
go back to reference Sharma A, Kitsak M, Cho MH, Ameli A, Zhou X, Jiang Z, Crapo JD, Beaty TH, Menche J, Bakke PS, Santolini M. Integration of molecular interactome and targeted interaction analysis to identify a COPD disease network module. Sci Rep. 2018;8(1):1–14. Sharma A, Kitsak M, Cho MH, Ameli A, Zhou X, Jiang Z, Crapo JD, Beaty TH, Menche J, Bakke PS, Santolini M. Integration of molecular interactome and targeted interaction analysis to identify a COPD disease network module. Sci Rep. 2018;8(1):1–14.
31.
go back to reference Chang Y, Glass K, Liu YY, Silverman EK, Crapo JD, Tal-Singer R, Bowler R, Dy J, Cho M, Castaldi P. COPD subtypes identified by network-based clustering of blood gene expression. Genomics. 2016;107(2–3):51–8.PubMed Chang Y, Glass K, Liu YY, Silverman EK, Crapo JD, Tal-Singer R, Bowler R, Dy J, Cho M, Castaldi P. COPD subtypes identified by network-based clustering of blood gene expression. Genomics. 2016;107(2–3):51–8.PubMed
32.
go back to reference Grosdidier S, Ferrer A, Faner R, Piñero J, Roca J, Cosío B, Agustí A, Gea J, Sanz F, Furlong LI. Network medicine analysis of COPD multimorbidities. Respir Res. 2014;15(1):1–11. Grosdidier S, Ferrer A, Faner R, Piñero J, Roca J, Cosío B, Agustí A, Gea J, Sanz F, Furlong LI. Network medicine analysis of COPD multimorbidities. Respir Res. 2014;15(1):1–11.
33.
go back to reference Morrow JD, Qiu W, Chhabra D, Rennard SI, Belloni P, Belousov A, Pillai SG, Hersh CP. Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods. BMC Med Genomics. 2015;8(1):1–11.PubMedPubMedCentral Morrow JD, Qiu W, Chhabra D, Rennard SI, Belloni P, Belousov A, Pillai SG, Hersh CP. Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods. BMC Med Genomics. 2015;8(1):1–11.PubMedPubMedCentral
34.
go back to reference Erten S, Bebek G, Ewing RM, Koyutürk M. DADA: degree-aware algorithms for network-based disease gene prioritization. BioData Mining. 2011;4(1):1–20. Erten S, Bebek G, Ewing RM, Koyutürk M. DADA: degree-aware algorithms for network-based disease gene prioritization. BioData Mining. 2011;4(1):1–20.
35.
go back to reference Hwang S, Kim CY, Yang S, Kim E, Hart T, Marcotte EM, Lee I. HumanNet v2: human gene networks for disease research. Nucleic Acids Res. 2019;47(D1):D573–80.PubMed Hwang S, Kim CY, Yang S, Kim E, Hart T, Marcotte EM, Lee I. HumanNet v2: human gene networks for disease research. Nucleic Acids Res. 2019;47(D1):D573–80.PubMed
37.
go back to reference Morrow JD, Zhou X, Lao T, Jiang Z, DeMeo DL, Cho MH, Qiu W, Cloonan S, Pinto-Plata V, Celli B, Marchetti N. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep. 2017;7(1):1–11. Morrow JD, Zhou X, Lao T, Jiang Z, DeMeo DL, Cho MH, Qiu W, Cloonan S, Pinto-Plata V, Celli B, Marchetti N. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep. 2017;7(1):1–11.
38.
go back to reference Morrow JD, Cho MH, Hersh CP, Pinto-Plata V, Celli B, Marchetti N, Criner G, Bueno R, Washko G, Glass K, Choi AM. DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics. 2016;11(10):730–9.PubMedPubMedCentral Morrow JD, Cho MH, Hersh CP, Pinto-Plata V, Celli B, Marchetti N, Criner G, Bueno R, Washko G, Glass K, Choi AM. DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics. 2016;11(10):730–9.PubMedPubMedCentral
39.
go back to reference Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.PubMedPubMedCentral Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.PubMedPubMedCentral
40.
go back to reference Mitra K, Carvunis AR, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14(10):719–32.PubMedPubMedCentral Mitra K, Carvunis AR, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14(10):719–32.PubMedPubMedCentral
41.
go back to reference Ghiassian SD, Menche J, Barabási AL. A DIseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. PLoS Comput Biol. 2015;11(4): e1004120.PubMedPubMedCentral Ghiassian SD, Menche J, Barabási AL. A DIseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. PLoS Comput Biol. 2015;11(4): e1004120.PubMedPubMedCentral
42.
go back to reference Wang B, Glass K, Röhl A, Santolini M, Croteau-Chonka DC, Weiss ST, Raby BA, Sharma A. The periphery and the core properties explain the omnigenic model in the human interactome. bioRxiv. 2019; 749358. Wang B, Glass K, Röhl A, Santolini M, Croteau-Chonka DC, Weiss ST, Raby BA, Sharma A. The periphery and the core properties explain the omnigenic model in the human interactome. bioRxiv. 2019; 749358.
43.
go back to reference Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, Reguly T. The BioGRID interaction database: 2011 update. Nucleic Acids Res. 2010;39(suppl_1):D698–704.PubMedPubMedCentral Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, Reguly T. The BioGRID interaction database: 2011 update. Nucleic Acids Res. 2010;39(suppl_1):D698–704.PubMedPubMedCentral
44.
go back to reference Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2010;39(suppl_1):D561–8.PubMedPubMedCentral Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2010;39(suppl_1):D561–8.PubMedPubMedCentral
45.
go back to reference Das J, Yu H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol. 2012;6(1):1–12. Das J, Yu H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol. 2012;6(1):1–12.
46.
go back to reference Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási AL, Loscalzo J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):1–12. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási AL, Loscalzo J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):1–12.
47.
go back to reference Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R. The BioPlex network: a systematic exploration of the human interactome. Cell. 2015;162(2):425–40.PubMedPubMedCentral Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R. The BioPlex network: a systematic exploration of the human interactome. Cell. 2015;162(2):425–40.PubMedPubMedCentral
49.
go back to reference Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8.PubMedPubMedCentral Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8.PubMedPubMedCentral
50.
go back to reference Wang RS, Loscalzo J. Network-based disease module discovery by a novel seed connector algorithm with pathobiological implications. J Mol Biol. 2018;430(18):2939–50.PubMedPubMedCentral Wang RS, Loscalzo J. Network-based disease module discovery by a novel seed connector algorithm with pathobiological implications. J Mol Biol. 2018;430(18):2939–50.PubMedPubMedCentral
51.
go back to reference Liu G, Wang H, Chu H, Yu J, Zhou X. Functional diversity of topological modules in human protein-protein interaction networks. Sci Rep. 2017;7(1):1–13. Liu G, Wang H, Chu H, Yu J, Zhou X. Functional diversity of topological modules in human protein-protein interaction networks. Sci Rep. 2017;7(1):1–13.
52.
go back to reference Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, Jackson VE, Shrine N, Qiao D, Bartz TM, Kim DK, Lee MK. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet. 2019;51(3):494–505.PubMedPubMedCentral Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, Jackson VE, Shrine N, Qiao D, Bartz TM, Kim DK, Lee MK. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet. 2019;51(3):494–505.PubMedPubMedCentral
53.
go back to reference Kanehisa, M. The KEGG database. In Novartis Foundation Symposium. Chichester; New York; Wiley; 2002, pp 91–100. Kanehisa, M. The KEGG database. In Novartis Foundation Symposium. Chichester; New York; Wiley; 2002, pp 91–100.
55.
go back to reference Wu DD, Song J, Bartel S, Krauss-Etschmann S, Rots MG, Hylkema MN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther. 2018;182:1–14.PubMed Wu DD, Song J, Bartel S, Krauss-Etschmann S, Rots MG, Hylkema MN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther. 2018;182:1–14.PubMed
56.
go back to reference Sundar IK, Yin Q, Baier BS, Yan L, Mazur W, Li D, Susiarjo M, Rahman I. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenet. 2017;9(1):1–18. Sundar IK, Yin Q, Baier BS, Yan L, Mazur W, Li D, Susiarjo M, Rahman I. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenet. 2017;9(1):1–18.
58.
go back to reference Drummond MB, Buist AS, Crapo JD, Wise RA, Rennard SI. Chronic obstructive pulmonary disease: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc. 2014;11(Supplement 3):S154–60.PubMedPubMedCentral Drummond MB, Buist AS, Crapo JD, Wise RA, Rennard SI. Chronic obstructive pulmonary disease: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc. 2014;11(Supplement 3):S154–60.PubMedPubMedCentral
59.
go back to reference Savran O, Ulrik CS. Early life insults as determinants of chronic obstructive pulmonary disease in adult life. Int J Chronic Obstr Pulm Dis. 2018;13:683. Savran O, Ulrik CS. Early life insults as determinants of chronic obstructive pulmonary disease in adult life. Int J Chronic Obstr Pulm Dis. 2018;13:683.
60.
go back to reference Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P, et al. Human deltex is a conserved regulator of Notch signalling. Nat Genet. 1998;19(1):74–8.PubMed Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P, et al. Human deltex is a conserved regulator of Notch signalling. Nat Genet. 1998;19(1):74–8.PubMed
62.
go back to reference O’Donnell A, Odrowaz Z, Sharrocks AD. Immediate-early gene activation by the MAPK pathways: what do and don’t we know? Biochem Soc Trans. 2012;40(1):58–66.PubMed O’Donnell A, Odrowaz Z, Sharrocks AD. Immediate-early gene activation by the MAPK pathways: what do and don’t we know? Biochem Soc Trans. 2012;40(1):58–66.PubMed
63.
go back to reference Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994;76(6):1025–37.PubMed Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994;76(6):1025–37.PubMed
64.
go back to reference Vallese D, Ricciardolo FL, Gnemmi I, Casolari P, Brun P, Sorbello V, Capelli A, Cappello F, Cavallesco GN, Papi A, Chung KF. Phospho-p38 MAPK expression in COPD patients and asthmatics and in challenged bronchial epithelium. Respiration. 2015;89(4):329–42.PubMed Vallese D, Ricciardolo FL, Gnemmi I, Casolari P, Brun P, Sorbello V, Capelli A, Cappello F, Cavallesco GN, Papi A, Chung KF. Phospho-p38 MAPK expression in COPD patients and asthmatics and in challenged bronchial epithelium. Respiration. 2015;89(4):329–42.PubMed
66.
go back to reference Tamaoka M, Hassan M, McGovern T, Ramos-Barbón D, Jo T, Yoshizawa Y, Tolloczko B, Hamid Q, Martin JG. The epidermal growth factor receptor mediates allergic airway remodelling in the rat. Eur Respir J. 2008;32(5):1213–23.PubMed Tamaoka M, Hassan M, McGovern T, Ramos-Barbón D, Jo T, Yoshizawa Y, Tolloczko B, Hamid Q, Martin JG. The epidermal growth factor receptor mediates allergic airway remodelling in the rat. Eur Respir J. 2008;32(5):1213–23.PubMed
67.
go back to reference Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334–6.PubMed Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334–6.PubMed
68.
go back to reference Susnow N, Zeng L, Margineantu D, Hockenbery DM. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol. 2009;19(1):42–9.PubMed Susnow N, Zeng L, Margineantu D, Hockenbery DM. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol. 2009;19(1):42–9.PubMed
69.
go back to reference Ludwig LM, Nassin ML, Hadji A, LaBelle JL. Killing two cells with one stone: pharmacologic BCL-2 family targeting for cancer cell death and immune modulation. Front Pediatr. 2016;4:135.PubMedPubMedCentral Ludwig LM, Nassin ML, Hadji A, LaBelle JL. Killing two cells with one stone: pharmacologic BCL-2 family targeting for cancer cell death and immune modulation. Front Pediatr. 2016;4:135.PubMedPubMedCentral
70.
go back to reference Tischner D, Woess C, Ottina E, Villunger A. Bcl-2-regulated cell death signalling in the prevention of autoimmunity. Cell Death Dis. 2010;1(6):e48–e48.PubMedPubMedCentral Tischner D, Woess C, Ottina E, Villunger A. Bcl-2-regulated cell death signalling in the prevention of autoimmunity. Cell Death Dis. 2010;1(6):e48–e48.PubMedPubMedCentral
71.
go back to reference Brichese L, Cazettes G, Valette A. JNK is associated with Bcl-2 and PP1 in mitochondria: paclitaxel induces its activation and its association with the phosphorylated form of Bcl-2. Cell Cycle. 2004;3(10):1312–9.PubMed Brichese L, Cazettes G, Valette A. JNK is associated with Bcl-2 and PP1 in mitochondria: paclitaxel induces its activation and its association with the phosphorylated form of Bcl-2. Cell Cycle. 2004;3(10):1312–9.PubMed
72.
go back to reference Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci. 2003;100(5):2432–7.PubMedPubMedCentral Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci. 2003;100(5):2432–7.PubMedPubMedCentral
73.
go back to reference Siganaki M, Koutsopoulos AV, Neofytou E, Vlachaki E, Psarrou M, Soulitzis N, Pentilas N, Schiza S, Siafakas NM, Tzortzaki EG. Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue of COPD patients. Respir Res. 2010;11(1):1–8. Siganaki M, Koutsopoulos AV, Neofytou E, Vlachaki E, Psarrou M, Soulitzis N, Pentilas N, Schiza S, Siafakas NM, Tzortzaki EG. Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue of COPD patients. Respir Res. 2010;11(1):1–8.
74.
go back to reference Cho MH, McDonald MLN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, DeMeo DL, Sylvia JS, Ziniti J, Laird NM, Lange C. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med. 2014;2(3):214–25.PubMedPubMedCentral Cho MH, McDonald MLN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, DeMeo DL, Sylvia JS, Ziniti J, Laird NM, Lange C. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med. 2014;2(3):214–25.PubMedPubMedCentral
75.
go back to reference Hodge S, Hodge G, Holmes M, Reynolds PN. Increased peripheral blood T-cell apoptosis and decreased Bcl-2 in chronic obstructive pulmonary disease. Immunol Cell Biol. 2005;83(2):160–6.PubMed Hodge S, Hodge G, Holmes M, Reynolds PN. Increased peripheral blood T-cell apoptosis and decreased Bcl-2 in chronic obstructive pulmonary disease. Immunol Cell Biol. 2005;83(2):160–6.PubMed
76.
go back to reference Zeng H, Kong X, Peng H, Chen Y, Cai S, Luo H, Chen P. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2012;16(6):711–27.PubMed Zeng H, Kong X, Peng H, Chen Y, Cai S, Luo H, Chen P. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2012;16(6):711–27.PubMed
77.
go back to reference Wu L, Ma L, Nicholson LF, Black PN. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir Med. 2011;105(3):329–36.PubMed Wu L, Ma L, Nicholson LF, Black PN. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir Med. 2011;105(3):329–36.PubMed
78.
go back to reference Oczypok EA, Perkins TN, Oury TD. All the “RAGE” in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev. 2017;23:40–9.PubMedPubMedCentral Oczypok EA, Perkins TN, Oury TD. All the “RAGE” in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev. 2017;23:40–9.PubMedPubMedCentral
79.
go back to reference Regan EA, Hersh CP, Castaldi PJ, DeMeo DL, Silverman EK, Crapo JD, Bowler RP. Omics and the search for blood biomarkers in chronic obstructive pulmonary disease Insights from COPDGene. Am J Respir Cell Mol Biol. 2019;61(2):143–9.PubMedPubMedCentral Regan EA, Hersh CP, Castaldi PJ, DeMeo DL, Silverman EK, Crapo JD, Bowler RP. Omics and the search for blood biomarkers in chronic obstructive pulmonary disease Insights from COPDGene. Am J Respir Cell Mol Biol. 2019;61(2):143–9.PubMedPubMedCentral
80.
go back to reference Sukjamnong, S., Chan, Y.L., Zakarya, R., Saad, S., Sharma, P., Santiyanont, R., Chen, H. and Oliver, B.G. Effect of long-term maternal smoking on the offspring’s lung health. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2017; 313(2), pp.L416-L423. Sukjamnong, S., Chan, Y.L., Zakarya, R., Saad, S., Sharma, P., Santiyanont, R., Chen, H. and Oliver, B.G. Effect of long-term maternal smoking on the offspring’s lung health. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2017; 313(2), pp.L416-L423.
81.
go back to reference Tsai CY, Chou HC, Chen CM. Perinatal nicotine exposure alters lung development and induces HMGB1-RAGE expression in neonatal mice. Birth Defects Res. 2021;113(7):570–8.PubMed Tsai CY, Chou HC, Chen CM. Perinatal nicotine exposure alters lung development and induces HMGB1-RAGE expression in neonatal mice. Birth Defects Res. 2021;113(7):570–8.PubMed
82.
go back to reference Sanders KA, Delker DA, Huecksteadt T, Beck E, Wuren T, Chen Y, Zhang Y, Hazel MW, Hoidal JR. RAGE is a critical mediator of pulmonary oxidative stress, alveolar macrophage activation and emphysema in response to cigarette smoke. Sci Rep. 2019;9(1):1–16. Sanders KA, Delker DA, Huecksteadt T, Beck E, Wuren T, Chen Y, Zhang Y, Hazel MW, Hoidal JR. RAGE is a critical mediator of pulmonary oxidative stress, alveolar macrophage activation and emphysema in response to cigarette smoke. Sci Rep. 2019;9(1):1–16.
83.
go back to reference Yonchuk JG, Silverman EK, Bowler RP, Agustí A, Lomas DA, Miller BE, Tal-Singer R, Mayer RJ. Circulating soluble receptor for advanced glycation end products (sRAGE) as a biomarker of emphysema and the RAGE axis in the lung. Am J Respir Crit Care Med. 2015;192(7):785–92.PubMed Yonchuk JG, Silverman EK, Bowler RP, Agustí A, Lomas DA, Miller BE, Tal-Singer R, Mayer RJ. Circulating soluble receptor for advanced glycation end products (sRAGE) as a biomarker of emphysema and the RAGE axis in the lung. Am J Respir Crit Care Med. 2015;192(7):785–92.PubMed
84.
go back to reference Dekkers BG, Spanjer AI, van der Schuyt RD, Kuik WJ, Zaagsma J, Meurs H. Focal adhesion Kinase regulates collagen I–induced airway smooth muscle phenotype switching. J Pharmacol Exp Ther. 2013;346(1):86–95.PubMed Dekkers BG, Spanjer AI, van der Schuyt RD, Kuik WJ, Zaagsma J, Meurs H. Focal adhesion Kinase regulates collagen I–induced airway smooth muscle phenotype switching. J Pharmacol Exp Ther. 2013;346(1):86–95.PubMed
85.
go back to reference Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3–5):75–174. Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3–5):75–174.
86.
go back to reference Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech: Theory Exp. 2008;2008(10):P10008. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech: Theory Exp. 2008;2008(10):P10008.
88.
go back to reference Pons, P. and Latapy, M. Computing communities in large networks using random walks. In International symposium on computer and information sciences. Springer, Berlin, Heidelberg; 2005, pp. 284–293. Pons, P. and Latapy, M. Computing communities in large networks using random walks. In International symposium on computer and information sciences. Springer, Berlin, Heidelberg; 2005, pp. 284–293.
89.
go back to reference Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature. 2010;466(7307):761–4.PubMed Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature. 2010;466(7307):761–4.PubMed
90.
go back to reference Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods. 2012;9(5):471.PubMedPubMedCentral Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods. 2012;9(5):471.PubMedPubMedCentral
91.
go back to reference Vlaic S, Conrad T, Tokarski-Schnelle C, Gustafsson M, Dahmen U, Guthke R, Schuster S. ModuleDiscoverer: identification of regulatory modules in protein–protein interaction networks. Sci Rep. 2018;8(1):1–11. Vlaic S, Conrad T, Tokarski-Schnelle C, Gustafsson M, Dahmen U, Guthke R, Schuster S. ModuleDiscoverer: identification of regulatory modules in protein–protein interaction networks. Sci Rep. 2018;8(1):1–11.
92.
go back to reference Bersanelli M, Mosca E, Remondini D, Castellani G, Milanesi L. Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules. Sci Rep. 2016;6(1):1–12. Bersanelli M, Mosca E, Remondini D, Castellani G, Milanesi L. Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules. Sci Rep. 2016;6(1):1–12.
93.
go back to reference Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci. 2008;105(11):4323–8.PubMedPubMedCentral Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci. 2008;105(11):4323–8.PubMedPubMedCentral
94.
go back to reference Liu Y, Brossard M, Roqueiro D, Margaritte-Jeannin P, Sarnowski C, Bouzigon E, Demenais F. SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network. Bioinformatics. 2017;33(10):1536–44.PubMed Liu Y, Brossard M, Roqueiro D, Margaritte-Jeannin P, Sarnowski C, Bouzigon E, Demenais F. SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network. Bioinformatics. 2017;33(10):1536–44.PubMed
95.
go back to reference Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E. 2007;76: 036106. Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E. 2007;76: 036106.
Metadata
Title
Protein interaction networks provide insight into fetal origins of chronic obstructive pulmonary disease
Authors
Annika Röhl
Seung Han Baek
Priyadarshini Kachroo
Jarrett D. Morrow
Kelan Tantisira
Edwin K. Silverman
Scott T. Weiss
Amitabh Sharma
Kimberly Glass
Dawn L. DeMeo
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2022
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-022-01963-5

Other articles of this Issue 1/2022

Respiratory Research 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine