Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2018

Open Access 01-12-2018 | Research article

Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing

Authors: Rosaria Greco, Chiara Demartini, Anna Maria Zanaboni, Cristina Tassorelli

Published in: The Journal of Headache and Pain | Issue 1/2018

Login to get access

Abstract

Background

Calcitonin gene related peptide (CGRP) is a key neuropeptide involved in the activation of the trigeminovascular system and it is likely related to migraine chronification. Here, we investigated the role of CGRP in an animal model that mimics the chronic migraine condition via repeated and intermittent nitroglycerin (NTG) administration. We also evaluated the modulatory effect of topiramate on this experimental paradigm. Male Sprague-Dawley rats were injected with NTG (5 mg/kg, i.p.) or vehicle, every 2 days over a 9-day period (5 total injections). A group of animals was injected with topiramate (30 mg/kg, i.p.) or saline every day for 9 days. Twenty-four hours after the last administration of NTG or vehicle, animals underwent tail flick test and orofacial Von Frey test. Rats were subsequently sacrificed to evaluate c-Fos and CGRP gene expression in medulla-pons region, cervical spinal cord and trigeminal ganglia.

Results

NTG administration induced spinal hyperalgesia and orofacial allodynia, together with a significant increase in the expression of CGRP and c-Fos genes in trigeminal ganglia and central areas. Topiramate treatment prevented NTG-induced changes by reversing NTG-induced hyperalgesia and allodynia, and inhibiting CGRP and c-Fos gene expression in all areas evaluated.

Conclusions

These findings point to the role of CGRP in the processes underlying migraine chronification and suggest a possible interaction with gamma-aminobutyrate (GABA) and glutamate transmission to induce/maintain central sensitization and to contribute to the dysregulation of descending pain system involved in chronic migraine.
Literature
2.
3.
go back to reference Bernstein C, Burstein R (2012) Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J Clin Neurol 8(2):89–99CrossRefPubMedPubMedCentral Bernstein C, Burstein R (2012) Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J Clin Neurol 8(2):89–99CrossRefPubMedPubMedCentral
4.
go back to reference Iyengar S, Ossipov MH, Johnson KW (2017) The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 158(4):543–559CrossRefPubMedPubMedCentral Iyengar S, Ossipov MH, Johnson KW (2017) The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 158(4):543–559CrossRefPubMedPubMedCentral
5.
go back to reference Greco R, Mangione AS, Siani F, Blandini F, Vairetti M, Nappi G, Sandrini G, Buzzi MG, Tassorelli C (2014) Effects of CGRP receptor antagonism in nitroglycerin-induced hyperalgesia. Cephalalgia 34(8):594–604CrossRefPubMed Greco R, Mangione AS, Siani F, Blandini F, Vairetti M, Nappi G, Sandrini G, Buzzi MG, Tassorelli C (2014) Effects of CGRP receptor antagonism in nitroglycerin-induced hyperalgesia. Cephalalgia 34(8):594–604CrossRefPubMed
6.
go back to reference Cornelison LE, Hawkins JL, Durham PL (2016) Elevated levels of calcitonin gene-related peptide in upper spinal cord promotes sensitization of primary trigeminal nociceptive neurons. Neuroscience 339:491–501CrossRefPubMedPubMedCentral Cornelison LE, Hawkins JL, Durham PL (2016) Elevated levels of calcitonin gene-related peptide in upper spinal cord promotes sensitization of primary trigeminal nociceptive neurons. Neuroscience 339:491–501CrossRefPubMedPubMedCentral
8.
go back to reference Ho TW, Connor KM, Zhang Y, Pearlman E, Koppenhaver J, Fan X, Lines C, Edvinsson L, Goadsby PJ, Michelson D (2014) Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology 83(11):958–966CrossRefPubMed Ho TW, Connor KM, Zhang Y, Pearlman E, Koppenhaver J, Fan X, Lines C, Edvinsson L, Goadsby PJ, Michelson D (2014) Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology 83(11):958–966CrossRefPubMed
9.
go back to reference Ho TW, Ho AP, Ge YJ, Assaid C, Gottwald R, MacGregor EA, Mannix LK, van Oosterhout WP, Koppenhaver J, Lines C, Ferrari MD, Michelson D (2016) Randomized controlled trial of the CGRP receptor antagonist telcagepant for prevention of headache in women with perimenstrual migraine. Cephalalgia 36(2):148–161CrossRefPubMed Ho TW, Ho AP, Ge YJ, Assaid C, Gottwald R, MacGregor EA, Mannix LK, van Oosterhout WP, Koppenhaver J, Lines C, Ferrari MD, Michelson D (2016) Randomized controlled trial of the CGRP receptor antagonist telcagepant for prevention of headache in women with perimenstrual migraine. Cephalalgia 36(2):148–161CrossRefPubMed
10.
go back to reference Dodick DW, Goadsby PJ, Spierings EL, Scherer JC, Sweeney SP, Grayzel DS (2014) Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol 13(9):885–892CrossRefPubMed Dodick DW, Goadsby PJ, Spierings EL, Scherer JC, Sweeney SP, Grayzel DS (2014) Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol 13(9):885–892CrossRefPubMed
11.
go back to reference Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, Grozinski-Wolff M, Yang R, Ma Y, Aycardi E (2017) Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med 377(22):2113–2122CrossRefPubMed Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, Grozinski-Wolff M, Yang R, Ma Y, Aycardi E (2017) Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med 377(22):2113–2122CrossRefPubMed
12.
go back to reference Russo AF (2015) Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharmacol Toxicol 55:533–552CrossRefPubMed Russo AF (2015) Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharmacol Toxicol 55:533–552CrossRefPubMed
13.
go back to reference Brandes JL, Saper JR, Diamond M, Couch JR, Lewis DW, Schmitt J, Neto W, Schwabe S, Jacobs D, MIGR-002 Study Group (2004) Topiramate for migraine prevention: a randomized controlled trial. JAMA 291(8):965–973CrossRefPubMed Brandes JL, Saper JR, Diamond M, Couch JR, Lewis DW, Schmitt J, Neto W, Schwabe S, Jacobs D, MIGR-002 Study Group (2004) Topiramate for migraine prevention: a randomized controlled trial. JAMA 291(8):965–973CrossRefPubMed
14.
go back to reference Silberstein SD (2017) Topiramate in migraine prevention: a 2016 perspective. Headache 57(1):165–178CrossRefPubMed Silberstein SD (2017) Topiramate in migraine prevention: a 2016 perspective. Headache 57(1):165–178CrossRefPubMed
15.
16.
go back to reference Motaghinejad M, Motevalian M (2016) Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus. Eur J Pharmacol 784:181–191CrossRefPubMed Motaghinejad M, Motevalian M (2016) Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus. Eur J Pharmacol 784:181–191CrossRefPubMed
17.
go back to reference Curia G, Aracri P, Colombo E, Scalmani P, Mantegazza M, Avanzini G, Franceschetti S (2007) Phosphorylation of sodium channels mediated by protein kinase-C modulates inhibition by topiramate of tetrodotoxin-sensitive transient sodium current. Br J Pharmacol 150(6):792–797CrossRefPubMedPubMedCentral Curia G, Aracri P, Colombo E, Scalmani P, Mantegazza M, Avanzini G, Franceschetti S (2007) Phosphorylation of sodium channels mediated by protein kinase-C modulates inhibition by topiramate of tetrodotoxin-sensitive transient sodium current. Br J Pharmacol 150(6):792–797CrossRefPubMedPubMedCentral
18.
go back to reference Sances G, Tassorelli C, Pucci E, Ghiotto N, Sandrini G, Nappi G (2004) Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia 24(2):110–119CrossRefPubMed Sances G, Tassorelli C, Pucci E, Ghiotto N, Sandrini G, Nappi G (2004) Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia 24(2):110–119CrossRefPubMed
19.
go back to reference Ashina M, Hansen JM, Olesen J (2013) Pearls and pitfalls in human pharmacological models of migraine: 30 years' experience. Cephalalgia 33(8):540–553CrossRefPubMed Ashina M, Hansen JM, Olesen J (2013) Pearls and pitfalls in human pharmacological models of migraine: 30 years' experience. Cephalalgia 33(8):540–553CrossRefPubMed
20.
go back to reference Greco R, Tassorelli C, Armentero MT, Sandrini G, Nappi G, Blandini F (2008) Role of central dopaminergic circuitry in pain processing and nitroglycerin-induced hyperalgesia. Brain Res 1238:215–223CrossRefPubMed Greco R, Tassorelli C, Armentero MT, Sandrini G, Nappi G, Blandini F (2008) Role of central dopaminergic circuitry in pain processing and nitroglycerin-induced hyperalgesia. Brain Res 1238:215–223CrossRefPubMed
21.
go back to reference Greco R, Bandiera T, Mangione AS, Demartini C, Siani F, Nappi G, Sandrini G, Guijarro A, Armirotti A, Piomelli D, Tassorelli C (2015) Effects of peripheral FAAH blockade on NTG-induced hyperalgesia--evaluation of URB937 in an animal model of migraine. Cephalalgia 35(12):1065–1076CrossRefPubMed Greco R, Bandiera T, Mangione AS, Demartini C, Siani F, Nappi G, Sandrini G, Guijarro A, Armirotti A, Piomelli D, Tassorelli C (2015) Effects of peripheral FAAH blockade on NTG-induced hyperalgesia--evaluation of URB937 in an animal model of migraine. Cephalalgia 35(12):1065–1076CrossRefPubMed
22.
go back to reference Greco R, Siani F, Demartini C, Zanaboni A, Nappi G, Davinelli S, Scapagnini G, Tassorelli C (2016) Andrographis Paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine. Funct Neurol 31(1):53–60PubMedPubMedCentral Greco R, Siani F, Demartini C, Zanaboni A, Nappi G, Davinelli S, Scapagnini G, Tassorelli C (2016) Andrographis Paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine. Funct Neurol 31(1):53–60PubMedPubMedCentral
23.
go back to reference Farajdokht F, Babri S, Karimi P, Alipour MR, Bughchechi R, Mohaddes G (2017) Chronic ghrelin treatment reduced photophobia and anxiety-like behaviors in nitroglycerin- induced migraine: role of pituitary adenylate cyclase-activating polypeptide. Eur J Neurosci 45(6):763–772CrossRefPubMed Farajdokht F, Babri S, Karimi P, Alipour MR, Bughchechi R, Mohaddes G (2017) Chronic ghrelin treatment reduced photophobia and anxiety-like behaviors in nitroglycerin- induced migraine: role of pituitary adenylate cyclase-activating polypeptide. Eur J Neurosci 45(6):763–772CrossRefPubMed
24.
go back to reference Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274CrossRefPubMed Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274CrossRefPubMed
25.
go back to reference Perrotta A, Serrao M, Tassorelli C, Arce-Leal N, Guaschino E, Sances G, Rossi P, Bartolo M, Pierelli F, Sandrini G, Nappi G (2011) Oral nitric-oxide donor glyceryl-trinitrate induces sensitization in spinal cord pain processing in migraineurs: a double-blind, placebo-controlled, cross-over study. Eur J Pain 15(5):482–490CrossRefPubMed Perrotta A, Serrao M, Tassorelli C, Arce-Leal N, Guaschino E, Sances G, Rossi P, Bartolo M, Pierelli F, Sandrini G, Nappi G (2011) Oral nitric-oxide donor glyceryl-trinitrate induces sensitization in spinal cord pain processing in migraineurs: a double-blind, placebo-controlled, cross-over study. Eur J Pain 15(5):482–490CrossRefPubMed
26.
go back to reference Zimmerman M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110CrossRef Zimmerman M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110CrossRef
27.
go back to reference Tassorelli C, Greco R, Cappelletti D, Sandrini G, Nappi G (2005) Comparative analysis of the neuronal activation and cardiovascular effects of nitroglycerin, sodium nitroprusside and L-arginine. Brain Res 1051(1–2):17–24CrossRefPubMed Tassorelli C, Greco R, Cappelletti D, Sandrini G, Nappi G (2005) Comparative analysis of the neuronal activation and cardiovascular effects of nitroglycerin, sodium nitroprusside and L-arginine. Brain Res 1051(1–2):17–24CrossRefPubMed
28.
go back to reference Wieczorkiewicz-Płaza A, Płaza P, Maciejewski R, Czuczwar M, Przesmycki K (2004) Effect of topiramate on mechanical allodynia in neuropathic pain model in rats. Pol J Pharmacol 56(2):275–278PubMed Wieczorkiewicz-Płaza A, Płaza P, Maciejewski R, Czuczwar M, Przesmycki K (2004) Effect of topiramate on mechanical allodynia in neuropathic pain model in rats. Pol J Pharmacol 56(2):275–278PubMed
29.
go back to reference Martin YB, Avendaño C (2009) Effects of removal of dietary polyunsaturated fatty acids on plasma extravasation and mechanical allodynia in a trigeminal neuropathic pain model. Mol Pain 5:8CrossRefPubMedPubMedCentral Martin YB, Avendaño C (2009) Effects of removal of dietary polyunsaturated fatty acids on plasma extravasation and mechanical allodynia in a trigeminal neuropathic pain model. Mol Pain 5:8CrossRefPubMedPubMedCentral
30.
go back to reference Oshinsky ML, Sanghvi MM, Maxwell CR, Gonzalez D, Spangenberg RJ, Cooper M, Silberstein SD (2012) Spontaneous trigeminal allodynia in rats: a model of primary headache. Headache 52(9):1336–1349CrossRefPubMedPubMedCentral Oshinsky ML, Sanghvi MM, Maxwell CR, Gonzalez D, Spangenberg RJ, Cooper M, Silberstein SD (2012) Spontaneous trigeminal allodynia in rats: a model of primary headache. Headache 52(9):1336–1349CrossRefPubMedPubMedCentral
31.
go back to reference Demartini C, Tassorelli C, Zanaboni AM, Tonsi G, Francesconi O, Nativi C, Greco R (2017) The role of the transient receptor potential ankyrin type-1 (TRPA1) channel in migraine pain: evaluation in an animal model. J Headache Pain 18(1):94CrossRefPubMedPubMedCentral Demartini C, Tassorelli C, Zanaboni AM, Tonsi G, Francesconi O, Nativi C, Greco R (2017) The role of the transient receptor potential ankyrin type-1 (TRPA1) channel in migraine pain: evaluation in an animal model. J Headache Pain 18(1):94CrossRefPubMedPubMedCentral
32.
go back to reference GBD 2015 Neurological Disorders Collaborator Group (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 16(11):877–897CrossRef GBD 2015 Neurological Disorders Collaborator Group (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 16(11):877–897CrossRef
33.
go back to reference Bigal ME, Walter S, Rapoport AM (2013) Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache 53(8):1230–1244CrossRefPubMed Bigal ME, Walter S, Rapoport AM (2013) Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache 53(8):1230–1244CrossRefPubMed
34.
go back to reference Moye LS, Pradhan AAA (2017) Animal model of chronic migraine-associated pain. Curr Protoc Neurosci 80:9.60.1–9.60.9CrossRef Moye LS, Pradhan AAA (2017) Animal model of chronic migraine-associated pain. Curr Protoc Neurosci 80:9.60.1–9.60.9CrossRef
35.
go back to reference Farkas S, Bölcskei K, Markovics A, Varga A, Kis-Varga Á, Kormos V, Gaszner B, Horváth C, Tuka B, Tajti J, Helyes Z (2016) Utility of different outcome measures for the nitroglycerin model of migraine in mice. J Pharmacol Toxicol Methods 77:33–44CrossRefPubMed Farkas S, Bölcskei K, Markovics A, Varga A, Kis-Varga Á, Kormos V, Gaszner B, Horváth C, Tuka B, Tajti J, Helyes Z (2016) Utility of different outcome measures for the nitroglycerin model of migraine in mice. J Pharmacol Toxicol Methods 77:33–44CrossRefPubMed
36.
go back to reference de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J (2014) Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 10(3):144–155CrossRefPubMed de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J (2014) Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 10(3):144–155CrossRefPubMed
37.
go back to reference Sandrini G, Tassorelli C, Cecchini AP, Alfonsi E, Nappi G (2002) Effects of nimesulide on nitric oxide-induced hyperalgesia in humans--a neurophysiological study. Eur J Pharmacol 450(3):259–262CrossRefPubMed Sandrini G, Tassorelli C, Cecchini AP, Alfonsi E, Nappi G (2002) Effects of nimesulide on nitric oxide-induced hyperalgesia in humans--a neurophysiological study. Eur J Pharmacol 450(3):259–262CrossRefPubMed
39.
go back to reference Louter MA, Bosker JE, van Oosterhout WP, van Zwet EW, Zitman FG, Ferrari MD, Terwindt GM (2013) Cutaneous allodynia as a predictor of migraine chronification. Brain 136(Pt 11):3489–3496CrossRefPubMed Louter MA, Bosker JE, van Oosterhout WP, van Zwet EW, Zitman FG, Ferrari MD, Terwindt GM (2013) Cutaneous allodynia as a predictor of migraine chronification. Brain 136(Pt 11):3489–3496CrossRefPubMed
41.
42.
go back to reference Ramachandran R, Pedersen SH, Amrutkar DV, Petersen S, Jacobsen JM, Hay-Schmidt A, Olesen J, Jansen-Olesen I (2017) Selective cephalic upregulation of p-ERK, CamKII and p-CREB in response to glyceryl trinitrate infusion. Cephalalgia Jan 1:333102417722511 Ramachandran R, Pedersen SH, Amrutkar DV, Petersen S, Jacobsen JM, Hay-Schmidt A, Olesen J, Jansen-Olesen I (2017) Selective cephalic upregulation of p-ERK, CamKII and p-CREB in response to glyceryl trinitrate infusion. Cephalalgia Jan 1:333102417722511
43.
go back to reference Greco R, Tassorelli C, Sandrini G, Di Bella P, Buscone S, Nappi G (2008) Role of calcitonin gene-related peptide and substance P in different models of pain. Cephalalgia 28(2):114–126PubMed Greco R, Tassorelli C, Sandrini G, Di Bella P, Buscone S, Nappi G (2008) Role of calcitonin gene-related peptide and substance P in different models of pain. Cephalalgia 28(2):114–126PubMed
44.
go back to reference Pardutz A, Multon S, Malgrange B, Parducz A, Vecsei L, Schoenen J (2002) Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 15(11):1803–1809CrossRefPubMed Pardutz A, Multon S, Malgrange B, Parducz A, Vecsei L, Schoenen J (2002) Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 15(11):1803–1809CrossRefPubMed
45.
go back to reference Capuano A, Greco MC, Navarra P, Tringali G (2014) Correlation between algogenic effects of calcitonin-gene-related peptide (CGRP) and activation of trigeminal vascular system, in an in vivo experimental model of nitroglycerin-induced sensitization. Eur J Pharmacol 740:97–102CrossRefPubMed Capuano A, Greco MC, Navarra P, Tringali G (2014) Correlation between algogenic effects of calcitonin-gene-related peptide (CGRP) and activation of trigeminal vascular system, in an in vivo experimental model of nitroglycerin-induced sensitization. Eur J Pharmacol 740:97–102CrossRefPubMed
47.
go back to reference Tassorelli C, Joseph SA, Buzzi MG, Nappi G (1999) The effects on the central nervous system of nitroglycerin--putative mechanisms and mediators. Prog Neurobiol 57(6):607–624CrossRefPubMed Tassorelli C, Joseph SA, Buzzi MG, Nappi G (1999) The effects on the central nervous system of nitroglycerin--putative mechanisms and mediators. Prog Neurobiol 57(6):607–624CrossRefPubMed
48.
49.
go back to reference Reuter U, Bolay H, Jansen-Olesen I, Chiarugi A, Sanchez del Rio M, Letourneau R, Theoharides TC, Waeber C, Moskowitz MA (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124(Pt 12):2490–2502CrossRefPubMed Reuter U, Bolay H, Jansen-Olesen I, Chiarugi A, Sanchez del Rio M, Letourneau R, Theoharides TC, Waeber C, Moskowitz MA (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124(Pt 12):2490–2502CrossRefPubMed
50.
go back to reference Edelmayer RM, Ossipov MH, Porreca F (2012) An experimental model of headache-related pain. Methods Mol Biol 851:109–120CrossRefPubMed Edelmayer RM, Ossipov MH, Porreca F (2012) An experimental model of headache-related pain. Methods Mol Biol 851:109–120CrossRefPubMed
51.
go back to reference Greco R, Demartini C, Zanaboni AM, Redavide E, Pampalone S, Toldi J, Fülöp F, Blandini F, Nappi G, Sandrini G, Vécsei L, Tassorelli C (2017) Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: targets and anti-migraine mechanisms. Cephalalgia 37(13):1272–1284CrossRefPubMed Greco R, Demartini C, Zanaboni AM, Redavide E, Pampalone S, Toldi J, Fülöp F, Blandini F, Nappi G, Sandrini G, Vécsei L, Tassorelli C (2017) Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: targets and anti-migraine mechanisms. Cephalalgia 37(13):1272–1284CrossRefPubMed
52.
go back to reference Raddant AC, Russo AF (2011) Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med 13:e36CrossRefPubMedPubMedCentral Raddant AC, Russo AF (2011) Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med 13:e36CrossRefPubMedPubMedCentral
53.
go back to reference Bhatt DK, Gupta S, Ploug KB, Jansen-Olesen I, Olesen J (2014) mRNA distribution of CGRP and its receptor components in the trigeminovascular system and other pain related structures in rat brain, and effect of intracerebroventricular administration of CGRP on Fos expression in the TNC. Neurosci Lett 559:99–104CrossRefPubMed Bhatt DK, Gupta S, Ploug KB, Jansen-Olesen I, Olesen J (2014) mRNA distribution of CGRP and its receptor components in the trigeminovascular system and other pain related structures in rat brain, and effect of intracerebroventricular administration of CGRP on Fos expression in the TNC. Neurosci Lett 559:99–104CrossRefPubMed
54.
go back to reference Kresse A, Jacobowitz DM, Skofitsch G (1995) Detailed mapping of CGRP mRNA expression in the rat central nervous system: comparison with previous immunocytochemical findings. Brain Res Bull 36(3):261–274CrossRefPubMed Kresse A, Jacobowitz DM, Skofitsch G (1995) Detailed mapping of CGRP mRNA expression in the rat central nervous system: comparison with previous immunocytochemical findings. Brain Res Bull 36(3):261–274CrossRefPubMed
55.
go back to reference Bernard JF, Alden M, Besson JM (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329(2):201–229CrossRefPubMed Bernard JF, Alden M, Besson JM (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329(2):201–229CrossRefPubMed
56.
go back to reference Eftekhari S, Edvinsson L (2011) Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci 12:112CrossRefPubMedPubMedCentral Eftekhari S, Edvinsson L (2011) Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci 12:112CrossRefPubMedPubMedCentral
57.
go back to reference Eftekhari S, Gaspar RC, Roberts R, Chen TB, Zeng Z, Villarreal S, Edvinsson L, Salvatore CA (2016) Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: a detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 524:90–118CrossRefPubMed Eftekhari S, Gaspar RC, Roberts R, Chen TB, Zeng Z, Villarreal S, Edvinsson L, Salvatore CA (2016) Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: a detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 524:90–118CrossRefPubMed
58.
go back to reference Silberstein S, Lipton R, Dodick D, Freitag F, Mathew N, Brandes J, Bigal M, Ascher S, Morein J, Wright P, Greenberg S, Hulihan J (2009) Topiramate treatment of chronic migraine: a randomized, placebo-controlled trial of quality of life and other efficacy measures. Headache 49:1153–1162CrossRefPubMed Silberstein S, Lipton R, Dodick D, Freitag F, Mathew N, Brandes J, Bigal M, Ascher S, Morein J, Wright P, Greenberg S, Hulihan J (2009) Topiramate treatment of chronic migraine: a randomized, placebo-controlled trial of quality of life and other efficacy measures. Headache 49:1153–1162CrossRefPubMed
59.
go back to reference Diener HC, Bussone G, Van Oene JC, Lahaye M, Schwalen S, Goadsby PJ, TOPMAT-MIG-201(TOP-CHROME) Study Group (2007) Topiramate reduces headache days in chronic migraine: a randomized, double-blind, placebo-controlled study. Cephalalgia 27:814–823CrossRefPubMed Diener HC, Bussone G, Van Oene JC, Lahaye M, Schwalen S, Goadsby PJ, TOPMAT-MIG-201(TOP-CHROME) Study Group (2007) Topiramate reduces headache days in chronic migraine: a randomized, double-blind, placebo-controlled study. Cephalalgia 27:814–823CrossRefPubMed
61.
go back to reference Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE (2000) An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics and mechanism of action. Epilepsia 41(Suppl 1):S3–S9CrossRefPubMed Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE (2000) An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics and mechanism of action. Epilepsia 41(Suppl 1):S3–S9CrossRefPubMed
62.
go back to reference Angehagen M, Ben-Menachem E, Rönnbäck L, Hansson E (2003) Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem Res 28(2):333–340CrossRefPubMed Angehagen M, Ben-Menachem E, Rönnbäck L, Hansson E (2003) Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem Res 28(2):333–340CrossRefPubMed
63.
go back to reference Benoliel R, Tal M, Eliav E (2006) Effects of topiramate on the chronicconstriction injury model in the rat. J Pain 7:878–883CrossRefPubMed Benoliel R, Tal M, Eliav E (2006) Effects of topiramate on the chronicconstriction injury model in the rat. J Pain 7:878–883CrossRefPubMed
64.
go back to reference Rus NN, Bocşan C, Vesa ŞC, Coadă CA, Buzoianu AD (2013) Topiramate in nociceptive pain - experimental analgesia study. Human & Vet Med Int J Bioflux Soc:70–76 Rus NN, Bocşan C, Vesa ŞC, Coadă CA, Buzoianu AD (2013) Topiramate in nociceptive pain - experimental analgesia study. Human & Vet Med Int J Bioflux Soc:70–76
65.
go back to reference Wild KD, Yagel SK, Shank RP (1997) The novel anticonvul-sant topiramate is anti-allodynic in a rat model of neu-ropathic pain. Soc Neurosci Abstr 23:2358 abstr 918.10 Wild KD, Yagel SK, Shank RP (1997) The novel anticonvul-sant topiramate is anti-allodynic in a rat model of neu-ropathic pain. Soc Neurosci Abstr 23:2358 abstr 918.10
66.
go back to reference Andreou AP, Goadsby PJ (2011) Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia 31(13):1343–1358CrossRefPubMed Andreou AP, Goadsby PJ (2011) Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia 31(13):1343–1358CrossRefPubMed
67.
go back to reference McLean MJ, Bukhari AA, Wamil AW (2000) Effects of topiramate on sodium-dependent action-potential firing by mouse spinal cord neurons in cell culture. Epilepsia 41(Suppl 1):S21–SS4CrossRefPubMed McLean MJ, Bukhari AA, Wamil AW (2000) Effects of topiramate on sodium-dependent action-potential firing by mouse spinal cord neurons in cell culture. Epilepsia 41(Suppl 1):S21–SS4CrossRefPubMed
68.
go back to reference Schiffer WK, Gerasimov MR, Marsteller DA, Geiger J, Barnett C, Alexoff DL, Dewey SL (2001) Topiramate selectively attenuates nicotine-induced increases in monoamine release. Synapse 42:196–198CrossRefPubMed Schiffer WK, Gerasimov MR, Marsteller DA, Geiger J, Barnett C, Alexoff DL, Dewey SL (2001) Topiramate selectively attenuates nicotine-induced increases in monoamine release. Synapse 42:196–198CrossRefPubMed
69.
go back to reference Shank RP, Maryanoff BE (2008) Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci Ther Summer 14(2):120–142CrossRef Shank RP, Maryanoff BE (2008) Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci Ther Summer 14(2):120–142CrossRef
70.
go back to reference Benarroch EE (2011) CGRP: sensory neuropeptide with multiple neurologic implications. Neurology 77(3):281–287CrossRefPubMed Benarroch EE (2011) CGRP: sensory neuropeptide with multiple neurologic implications. Neurology 77(3):281–287CrossRefPubMed
71.
go back to reference Bouhassira D, Le Bars D, Villanueva L (1987) Heterotopic activation of ad and C fibres triggers inhibition of trigeminal and spinal convergent neurons in the rat. J Physiol 389:301–317CrossRefPubMedPubMedCentral Bouhassira D, Le Bars D, Villanueva L (1987) Heterotopic activation of ad and C fibres triggers inhibition of trigeminal and spinal convergent neurons in the rat. J Physiol 389:301–317CrossRefPubMedPubMedCentral
72.
go back to reference Durham PL, Niemann C, Cady R (2006) Repression of stimulated calcitonin gene-related peptide secretion by topiramate. Headache 46(8):1291–1295CrossRefPubMed Durham PL, Niemann C, Cady R (2006) Repression of stimulated calcitonin gene-related peptide secretion by topiramate. Headache 46(8):1291–1295CrossRefPubMed
73.
go back to reference Lau BK, Vaughan CW (2014) Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 29:159–164CrossRefPubMed Lau BK, Vaughan CW (2014) Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 29:159–164CrossRefPubMed
74.
go back to reference Johannessen SI (1997) Pharmacokinetics and interaction profile of topiramate: review and comparison with other newer antiepileptic drugs. Epilepsia 38(Suppl 1):S18–S23CrossRefPubMed Johannessen SI (1997) Pharmacokinetics and interaction profile of topiramate: review and comparison with other newer antiepileptic drugs. Epilepsia 38(Suppl 1):S18–S23CrossRefPubMed
75.
go back to reference Matar KM, Tayem YI (2014) Effect of experimentally induced hepatic and renal failure on the pharmacokinetics of topiramate in rats. Biomed Res Int 2014:570910CrossRefPubMedPubMedCentral Matar KM, Tayem YI (2014) Effect of experimentally induced hepatic and renal failure on the pharmacokinetics of topiramate in rats. Biomed Res Int 2014:570910CrossRefPubMedPubMedCentral
76.
go back to reference Löscher W (2007) The pharmacokinetics of antiepileptic drugs in rats: consequences for maintaining effective drug levels during prolonged drug administration in rat models of epilepsy. Epilepsia 48(7):1245–1258CrossRefPubMed Löscher W (2007) The pharmacokinetics of antiepileptic drugs in rats: consequences for maintaining effective drug levels during prolonged drug administration in rat models of epilepsy. Epilepsia 48(7):1245–1258CrossRefPubMed
77.
go back to reference Motaghinejad M, Motevalian M, Shabab B (2016) Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus. Clin Exp Pharmacol Physiol 43(3):360–371CrossRefPubMed Motaghinejad M, Motevalian M, Shabab B (2016) Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus. Clin Exp Pharmacol Physiol 43(3):360–371CrossRefPubMed
Metadata
Title
Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing
Authors
Rosaria Greco
Chiara Demartini
Anna Maria Zanaboni
Cristina Tassorelli
Publication date
01-12-2018
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 1/2018
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-018-0879-6

Other articles of this Issue 1/2018

The Journal of Headache and Pain 1/2018 Go to the issue