Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Chondrosarcoma | Research article

Biomimetic design and clinical application of Ti-6Al-4V lattice hemipelvis prosthesis for pelvic reconstruction

Authors: Zhuangzhuang Li, Yi Luo, Minxun Lu, Yitian Wang, Taojun Gong, Xuanhong He, Xin Hu, Jingjunjiao Long, Yong Zhou, Li Min, Chongqi Tu

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Objective

This study aims to biomimetic design a new 3D-printed lattice hemipelvis prosthesis and evaluate its clinical efficiency for pelvic reconstruction following tumor resection, focusing on feasibility, osseointegration, and patient outcomes.

Methods

From May 2020 to October 2021, twelve patients with pelvic tumors underwent tumor resection and subsequently received 3D-printed lattice hemipelvis prostheses for pelvic reconstruction. The prosthesis was strategically incorporated with lattice structures and solid to optimize mechanical performance and osseointegration. The pore size and porosity were analyzed. Patient outcomes were assessed through a combination of clinical and radiological evaluations.

Results

Multiple pore sizes were observed in irregular porous structures, with a wide distribution range (approximately 300–900 μm). The average follow-up of 34.7 months, ranging 26 from to 43 months. One patient with Ewing sarcoma died of pulmonary metastasis 33 months after surgery while others were alive at the last follow-up. Postoperative radiographs showed that the prosthesis’s position was consistent with the preoperative planning. T-SMART images showed that the host bone was in close and tight contact with the prosthesis with no gaps at the interface. The average MSTS score was 21 at the last follow-up, ranging from 18 to 24. There was no complication requiring revision surgery or removal of the 3D-printed hemipelvis prosthesis, such as infection, screw breakage, and prosthesis loosening.

Conclusion

The newly designed 3D-printed lattice hemipelvis prosthesis created multiple pore sizes with a wide distribution range and resulted in good osteointegration and favorable limb function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Guo W, Li D, Tang X, Yang Y, Ji T. Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthop Relat Research®. 2007;461:180–8.CrossRef Guo W, Li D, Tang X, Yang Y, Ji T. Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthop Relat Research®. 2007;461:180–8.CrossRef
2.
go back to reference Liang H, Ji T, Zhang Y, Wang Y, Guo W. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. bone Joint J. 2017;99(2):267–75.CrossRefPubMed Liang H, Ji T, Zhang Y, Wang Y, Guo W. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. bone Joint J. 2017;99(2):267–75.CrossRefPubMed
3.
go back to reference Wang J, Min L, Lu M, Zhang Y, Wang Y, Luo Y, Zhou Y, Duan H, Tu C. Three-dimensional-printed custom-made hemipelvic endoprosthesis for primary malignancies involving acetabulum: the design solution and surgical techniques. J Orthop Surg Res. 2019;14:1–12.CrossRef Wang J, Min L, Lu M, Zhang Y, Wang Y, Luo Y, Zhou Y, Duan H, Tu C. Three-dimensional-printed custom-made hemipelvic endoprosthesis for primary malignancies involving acetabulum: the design solution and surgical techniques. J Orthop Surg Res. 2019;14:1–12.CrossRef
4.
go back to reference O’connor M, Sim F. Salvage of the limb in the treatment of malignant pelvic tumors. JBJS. 1989;71(4):481–94.CrossRef O’connor M, Sim F. Salvage of the limb in the treatment of malignant pelvic tumors. JBJS. 1989;71(4):481–94.CrossRef
5.
go back to reference Jansen J, Van de Sande M, Dijkstra P. Poor long-term clinical results of saddle prosthesis after resection of periacetabular tumors. Clin Orthop Relat Research®. 2013;471:324–31.CrossRef Jansen J, Van de Sande M, Dijkstra P. Poor long-term clinical results of saddle prosthesis after resection of periacetabular tumors. Clin Orthop Relat Research®. 2013;471:324–31.CrossRef
6.
go back to reference Danışman M, Mermerkaya MU, Bekmez Ş, Ayvaz M, Atilla B, Tokgözoğlu AM. Reconstruction of periacetabular tumours with saddle prosthesis or custom-made prosthesis, functional results and complications. Hip Int. 2016;26(2):e14–8.CrossRefPubMed Danışman M, Mermerkaya MU, Bekmez Ş, Ayvaz M, Atilla B, Tokgözoğlu AM. Reconstruction of periacetabular tumours with saddle prosthesis or custom-made prosthesis, functional results and complications. Hip Int. 2016;26(2):e14–8.CrossRefPubMed
7.
go back to reference Issa S-P, Biau D, Babinet A, Dumaine V, Le Hanneur M, Anract P. Pelvic reconstructions following peri-acetabular bone tumour resections using a cementless ice-cream cone prosthesis with dual mobility cup. Int Orthop. 2018;42:1987–97.CrossRefPubMed Issa S-P, Biau D, Babinet A, Dumaine V, Le Hanneur M, Anract P. Pelvic reconstructions following peri-acetabular bone tumour resections using a cementless ice-cream cone prosthesis with dual mobility cup. Int Orthop. 2018;42:1987–97.CrossRefPubMed
8.
go back to reference Fisher N, Patton J, Grimer R, Porter D, Jeys L, Tillman R, Abudu A, Carter S. Ice-cream cone reconstruction of the pelvis: a new type of pelvic replacement: early results. J Bone Joint Surg Br Volume. 2011;93(5):684–8.CrossRef Fisher N, Patton J, Grimer R, Porter D, Jeys L, Tillman R, Abudu A, Carter S. Ice-cream cone reconstruction of the pelvis: a new type of pelvic replacement: early results. J Bone Joint Surg Br Volume. 2011;93(5):684–8.CrossRef
9.
go back to reference Wang B, Xie X, Yin J, Zou C, Wang J, Huang G, Wang Y, Shen J. Reconstruction with modular hemipelvic endoprosthesis after pelvic tumor resection: a report of 50 consecutive cases. PLoS ONE. 2015;10(5):e0127263.CrossRefPubMedPubMedCentral Wang B, Xie X, Yin J, Zou C, Wang J, Huang G, Wang Y, Shen J. Reconstruction with modular hemipelvic endoprosthesis after pelvic tumor resection: a report of 50 consecutive cases. PLoS ONE. 2015;10(5):e0127263.CrossRefPubMedPubMedCentral
10.
go back to reference Zang J, Guo W, Yang Y, Xie L. Reconstruction of the hemipelvis with a modular prosthesis after resection of a primary malignant peri-acetabular tumour involving the sacroiliac joint. bone Joint J. 2014;96(3):399–405.CrossRefPubMed Zang J, Guo W, Yang Y, Xie L. Reconstruction of the hemipelvis with a modular prosthesis after resection of a primary malignant peri-acetabular tumour involving the sacroiliac joint. bone Joint J. 2014;96(3):399–405.CrossRefPubMed
11.
go back to reference Guo Z, Peng Y, Shen Q, Li J, He P, Yuan P, Liu Y, Que Y, Guo W, Hu Y. Reconstruction with 3D-printed prostheses after type I + II + III internal hemipelvectomy: Finite element analysis and preliminary outcomes. Front Bioeng Biotechnol. 2023;10:1036882.CrossRefPubMedPubMedCentral Guo Z, Peng Y, Shen Q, Li J, He P, Yuan P, Liu Y, Que Y, Guo W, Hu Y. Reconstruction with 3D-printed prostheses after type I + II + III internal hemipelvectomy: Finite element analysis and preliminary outcomes. Front Bioeng Biotechnol. 2023;10:1036882.CrossRefPubMedPubMedCentral
12.
go back to reference Enneking WF, Dunham W. Resection and reconstruction for primary neoplasms involving the innominate bone. JBJS. 1978;60(6):731–46.CrossRef Enneking WF, Dunham W. Resection and reconstruction for primary neoplasms involving the innominate bone. JBJS. 1978;60(6):731–46.CrossRef
13.
go back to reference Zhou Y, Min L, Liu Y, Shi R, Zhang W, Zhang H, Duan H, Tu C. Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction. Int Orthop. 2013;37:653–8.CrossRefPubMedPubMedCentral Zhou Y, Min L, Liu Y, Shi R, Zhang W, Zhang H, Duan H, Tu C. Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction. Int Orthop. 2013;37:653–8.CrossRefPubMedPubMedCentral
14.
go back to reference Zhang Y, Tang X, Ji T, Yan T, Yang R, Yang Y, Wei R, Liang H, Guo W. Is a modular pedicle-hemipelvic endoprosthesis durable at short term in patients undergoing enneking type I + II tumor resections with or without Sacroiliac involvement? Clin Orthop Relat Research® 2018, 476(9). Zhang Y, Tang X, Ji T, Yan T, Yang R, Yang Y, Wei R, Liang H, Guo W. Is a modular pedicle-hemipelvic endoprosthesis durable at short term in patients undergoing enneking type I + II tumor resections with or without Sacroiliac involvement? Clin Orthop Relat Research® 2018, 476(9).
15.
go back to reference Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. Global Health J 2022. Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. Global Health J 2022.
17.
go back to reference Wang B, Hao Y, Pu F, Jiang W, Shao Z. Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour. Int Orthop. 2018;42:687–94.CrossRefPubMed Wang B, Hao Y, Pu F, Jiang W, Shao Z. Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour. Int Orthop. 2018;42:687–94.CrossRefPubMed
18.
go back to reference Zoccali C, Baldi J, Attala D, Scotto di Uccio A, Cannavò L, Scotto G, Luzzati A. 3D-printed titanium custom-made prostheses in reconstruction after pelvic tumor resection: indications and results in a series of 14 patients at 42 months of average follow-up. J Clin Med. 2021;10(16):3539.CrossRefPubMedPubMedCentral Zoccali C, Baldi J, Attala D, Scotto di Uccio A, Cannavò L, Scotto G, Luzzati A. 3D-printed titanium custom-made prostheses in reconstruction after pelvic tumor resection: indications and results in a series of 14 patients at 42 months of average follow-up. J Clin Med. 2021;10(16):3539.CrossRefPubMedPubMedCentral
19.
go back to reference Peng W, Zheng R, Wang H, Huang X. Reconstruction of bony defects after tumor resection with 3D-printed anatomically conforming pelvic prostheses through a novel treatment strategy. BioMed Research International 2020, 2020. Peng W, Zheng R, Wang H, Huang X. Reconstruction of bony defects after tumor resection with 3D-printed anatomically conforming pelvic prostheses through a novel treatment strategy. BioMed Research International 2020, 2020.
20.
go back to reference Zhu D, Fu J, Wang L, Guo Z, Wang Z, Fan H. Reconstruction with customized, 3D-printed prosthesis after resection of periacetabular ewing’s sarcoma in children using triradiate cartilage-based surgical strategy: a technical note. J Orthop Translation. 2021;28:108–17.CrossRef Zhu D, Fu J, Wang L, Guo Z, Wang Z, Fan H. Reconstruction with customized, 3D-printed prosthesis after resection of periacetabular ewing’s sarcoma in children using triradiate cartilage-based surgical strategy: a technical note. J Orthop Translation. 2021;28:108–17.CrossRef
21.
go back to reference Li Z, Lu M, Min L, Luo Y, Tu C. Treatment of pelvic giant cell tumor by wide resection with patient-specific bone-cutting guide and reconstruction with 3D-printed personalized implant. J Orthop Surg Res. 2023;18(1):648.CrossRefPubMedPubMedCentral Li Z, Lu M, Min L, Luo Y, Tu C. Treatment of pelvic giant cell tumor by wide resection with patient-specific bone-cutting guide and reconstruction with 3D-printed personalized implant. J Orthop Surg Res. 2023;18(1):648.CrossRefPubMedPubMedCentral
22.
go back to reference Ma L, Wang X, Zhao N, Zhu Y, Qiu Z, Li Q, Zhou Y, Lin Z, Li X, Zeng X. Integrating 3D printing and biomimetic mineralization for personalized enhanced osteogenesis, angiogenesis, and osteointegration. ACS Appl Mater Interfaces. 2018;10(49):42146–54.CrossRefPubMedPubMedCentral Ma L, Wang X, Zhao N, Zhu Y, Qiu Z, Li Q, Zhou Y, Lin Z, Li X, Zeng X. Integrating 3D printing and biomimetic mineralization for personalized enhanced osteogenesis, angiogenesis, and osteointegration. ACS Appl Mater Interfaces. 2018;10(49):42146–54.CrossRefPubMedPubMedCentral
23.
go back to reference Wang H, Su K, Su L, Liang P, Ji P, Wang C. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: a biomechanical evaluation. J Mech Behav Biomed Mater. 2018;88:488–96.CrossRefPubMed Wang H, Su K, Su L, Liang P, Ji P, Wang C. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: a biomechanical evaluation. J Mech Behav Biomed Mater. 2018;88:488–96.CrossRefPubMed
24.
go back to reference Pei X, Wu L, Zhou C, Fan H, Gou M, Li Z, Zhang B, Lei H, Sun H, Liang J. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study. Biofabrication. 2020;13(1):015008.CrossRef Pei X, Wu L, Zhou C, Fan H, Gou M, Li Z, Zhang B, Lei H, Sun H, Liang J. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study. Biofabrication. 2020;13(1):015008.CrossRef
25.
go back to reference Chao L, Jiao C, Liang H, Xie D, Shen L, Liu Z. Analysis of mechanical properties and permeability of trabecular-like porous scaffold by additive manufacturing. Front Bioeng Biotechnol. 2021;9:779854.CrossRefPubMedPubMedCentral Chao L, Jiao C, Liang H, Xie D, Shen L, Liu Z. Analysis of mechanical properties and permeability of trabecular-like porous scaffold by additive manufacturing. Front Bioeng Biotechnol. 2021;9:779854.CrossRefPubMedPubMedCentral
26.
go back to reference Pei X, Wang L, Zhou C, Wu L, Lei H, Fan S, Zeng Z, Deng Z, Kong Q, Jiang Q. Ti6Al4V orthopedic implant with biomimetic heterogeneous structure via 3D printing for improving osteogenesis. Mater Design. 2022;221:110964.CrossRef Pei X, Wang L, Zhou C, Wu L, Lei H, Fan S, Zeng Z, Deng Z, Kong Q, Jiang Q. Ti6Al4V orthopedic implant with biomimetic heterogeneous structure via 3D printing for improving osteogenesis. Mater Design. 2022;221:110964.CrossRef
27.
go back to reference Pei X, Wu L, Lei H, Zhou C, Fan H, Li Z, Zhang B, Sun H, Gui X, Jiang Q. Fabrication of customized Ti6AI4V heterogeneous scaffolds with selective laser melting: optimization of the architecture for orthopedic implant applications. Acta Biomater. 2021;126:485–95.CrossRefPubMed Pei X, Wu L, Lei H, Zhou C, Fan H, Li Z, Zhang B, Sun H, Gui X, Jiang Q. Fabrication of customized Ti6AI4V heterogeneous scaffolds with selective laser melting: optimization of the architecture for orthopedic implant applications. Acta Biomater. 2021;126:485–95.CrossRefPubMed
28.
go back to reference Bus MPA, Boerhout EJ, Bramer JAM, Dijkstra PDS. Clinical outcome of pedestal cup endoprosthetic reconstruction after resection of a peri-acetabular tumour. Bone Joint J. 2014;96–B(12):1706–12.CrossRefPubMed Bus MPA, Boerhout EJ, Bramer JAM, Dijkstra PDS. Clinical outcome of pedestal cup endoprosthetic reconstruction after resection of a peri-acetabular tumour. Bone Joint J. 2014;96–B(12):1706–12.CrossRefPubMed
29.
go back to reference Falkinstein Y, Ahlmann ER, Menendez LR. Reconstruction of type II pelvic resection with a new peri-acetabular reconstruction endoprosthesis. J Bone Joint Surg Br Volume. 2008;90–B(3):371–6.CrossRef Falkinstein Y, Ahlmann ER, Menendez LR. Reconstruction of type II pelvic resection with a new peri-acetabular reconstruction endoprosthesis. J Bone Joint Surg Br Volume. 2008;90–B(3):371–6.CrossRef
30.
go back to reference Ji T, Guo W, Yang RL, Tang XD, Wang YF. Modular hemipelvic endoprosthesis reconstruction–experience in 100 patients with mid-term follow-up results. Eur J Surg Oncol (EJSO). 2013;39(1):53–60.CrossRefPubMed Ji T, Guo W, Yang RL, Tang XD, Wang YF. Modular hemipelvic endoprosthesis reconstruction–experience in 100 patients with mid-term follow-up results. Eur J Surg Oncol (EJSO). 2013;39(1):53–60.CrossRefPubMed
31.
go back to reference Wang J, Min L, Lu M, Zhang Y, Wang Y, Luo Y, Zhou Y, Duan H, Tu C. What are the complications of three-dimensionally printed, custom-made, integrative hemipelvic endoprostheses in patients with primary malignancies involving the acetabulum, and what is the function of these patients? Clin Orthop Relat Res. 2020;478(11):2487.CrossRefPubMedPubMedCentral Wang J, Min L, Lu M, Zhang Y, Wang Y, Luo Y, Zhou Y, Duan H, Tu C. What are the complications of three-dimensionally printed, custom-made, integrative hemipelvic endoprostheses in patients with primary malignancies involving the acetabulum, and what is the function of these patients? Clin Orthop Relat Res. 2020;478(11):2487.CrossRefPubMedPubMedCentral
32.
go back to reference Wong K, Kumta S, Geel N, Demol J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015;20(1):14–23.CrossRefPubMed Wong K, Kumta S, Geel N, Demol J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015;20(1):14–23.CrossRefPubMed
33.
go back to reference Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater. 2017;6(23):1700612.CrossRef Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater. 2017;6(23):1700612.CrossRef
34.
go back to reference Palmquist A, Snis A, Emanuelsson L, Browne M, Thomsen P. Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid and porous titanium alloy: experimental studies in sheep. J Biomater Appl. 2013;27(8):1003–16.CrossRefPubMed Palmquist A, Snis A, Emanuelsson L, Browne M, Thomsen P. Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid and porous titanium alloy: experimental studies in sheep. J Biomater Appl. 2013;27(8):1003–16.CrossRefPubMed
35.
go back to reference Shah FA, Omar O, Suska F, Snis A, Matic A, Emanuelsson L, Norlindh B, Lausmaa J, Thomsen P, Palmquist A. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomater. 2016;36:296–309.CrossRefPubMed Shah FA, Omar O, Suska F, Snis A, Matic A, Emanuelsson L, Norlindh B, Lausmaa J, Thomsen P, Palmquist A. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomater. 2016;36:296–309.CrossRefPubMed
36.
go back to reference Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Engineering: C. 2016;59:690–701.CrossRef Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Engineering: C. 2016;59:690–701.CrossRef
37.
go back to reference Hara D, Nakashima Y, Sato T, Hirata M, Kanazawa M, Kohno Y, Yoshimoto K, Yoshihara Y, Nakamura A, Nakao Y. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Mater Sci Engineering: C. 2016;59:1047–52.CrossRef Hara D, Nakashima Y, Sato T, Hirata M, Kanazawa M, Kohno Y, Yoshimoto K, Yoshihara Y, Nakamura A, Nakao Y. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Mater Sci Engineering: C. 2016;59:1047–52.CrossRef
38.
go back to reference Kapat K, Srivas PK, Rameshbabu AP, Maity PP, Jana S, Dutta J, Majumdar P, Chakrabarti D, Dhara S. Influence of porosity and pore-size distribution in Ti6Al4 V foam on physicomechanical properties, osteogenesis, and quantitative validation of bone ingrowth by micro-computed tomography. ACS Appl Mater Interfaces. 2017;9(45):39235–48.CrossRefPubMed Kapat K, Srivas PK, Rameshbabu AP, Maity PP, Jana S, Dutta J, Majumdar P, Chakrabarti D, Dhara S. Influence of porosity and pore-size distribution in Ti6Al4 V foam on physicomechanical properties, osteogenesis, and quantitative validation of bone ingrowth by micro-computed tomography. ACS Appl Mater Interfaces. 2017;9(45):39235–48.CrossRefPubMed
39.
go back to reference Xu L, Qin H, Tan J, Cheng Z, Luo X, Tan H, Huang W. Clinical study of 3D printed personalized prosthesis in the treatment of bone defect after pelvic tumor resection. J Orthop Translation. 2021;29:163–9.CrossRef Xu L, Qin H, Tan J, Cheng Z, Luo X, Tan H, Huang W. Clinical study of 3D printed personalized prosthesis in the treatment of bone defect after pelvic tumor resection. J Orthop Translation. 2021;29:163–9.CrossRef
40.
go back to reference Dai K-R, Yan M-N, Zhu Z-A, Sun Y-H. Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. J Arthroplast. 2007;22(7):981–6.CrossRef Dai K-R, Yan M-N, Zhu Z-A, Sun Y-H. Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. J Arthroplast. 2007;22(7):981–6.CrossRef
Metadata
Title
Biomimetic design and clinical application of Ti-6Al-4V lattice hemipelvis prosthesis for pelvic reconstruction
Authors
Zhuangzhuang Li
Yi Luo
Minxun Lu
Yitian Wang
Taojun Gong
Xuanhong He
Xin Hu
Jingjunjiao Long
Yong Zhou
Li Min
Chongqi Tu
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Chondrosarcoma
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04672-5

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue