Skip to main content
Top
Published in: CNS Drugs 11/2009

01-11-2009 | Review Article

Cholinergic Functioning in Stimulant Addiction

Implications for Medications Development

Authors: Dr Mehmet Sofuoglu, Marc Mooney

Published in: CNS Drugs | Issue 11/2009

Login to get access

Abstract

Acetylcholine, the first neurotransmitter discovered, participates in many CNS functions, including sensory and motor processing, sleep, nociception, mood, stress response, attention, arousal, memory, motivation and reward. These diverse cholinergic effects are mediated by nicotinic- and muscarinic-type cholinergic receptors (nAChR and mAChR, respectively). The goal of this review is to synthesize a growing literature that supports the potential role of acetylcholine as a treatment target for stimulant addiction. Acetylcholine interacts with the dopaminergic reward system in the ventral tegmental area, nucleus accumbens and prefrontal cortex. In the ventral tegmental area, both nAChR and mAChR stimulate the dopaminergic system. In the nucleus accumbens, cholinergic interneurons integrate cortical and subcortical information related to reward. In the prefrontal cortex, the cholinergic system contributes to the cognitive aspects of addiction. Preclinical studies support a facilitative role of nicotinic receptor agonists in the development of stimulant addiction. In contrast, nonselective muscarinic receptor agonists seem to have an inhibitory role. In human studies, acetylcholinesterase inhibitors, which increase synaptic acetylcholine levels, have shown promise for the treatment of stimulant addiction. Further studies testing the efficacy of cholinergic medications for stimulant addiction are warranted.
Literature
1.
go back to reference Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 8th ed. Oxford: Oxford University Press, 2003 Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 8th ed. Oxford: Oxford University Press, 2003
2.
go back to reference Eglen RM. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 2006 Jul; 26(3): 219–33PubMedCrossRef Eglen RM. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 2006 Jul; 26(3): 219–33PubMedCrossRef
3.
go back to reference Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 2002; 111(4): 815–35PubMedCrossRef Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 2002; 111(4): 815–35PubMedCrossRef
4.
go back to reference Lucas-Meunier E, Fossier P, Baux G, et al. Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003 Apr; 446(1): 17–29PubMed Lucas-Meunier E, Fossier P, Baux G, et al. Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003 Apr; 446(1): 17–29PubMed
5.
go back to reference Perry E, Walker M, Grace J, et al. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999 Jun; 22(6): 273–80PubMedCrossRef Perry E, Walker M, Grace J, et al. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999 Jun; 22(6): 273–80PubMedCrossRef
7.
go back to reference Williams MJ, Adinoff B. The role of acetylcholine in cocaine addiction. Neuropsychopharmacology 2007 Jul; 33(8): 1779–97PubMedCrossRef Williams MJ, Adinoff B. The role of acetylcholine in cocaine addiction. Neuropsychopharmacology 2007 Jul; 33(8): 1779–97PubMedCrossRef
8.
go back to reference Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007; 47: 699–729PubMedCrossRef Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007; 47: 699–729PubMedCrossRef
9.
go back to reference Mesulam MM. The cholinergic innervation of the human cerebral cortex. Prog Brain Res 2004; 145: 67–78PubMedCrossRef Mesulam MM. The cholinergic innervation of the human cerebral cortex. Prog Brain Res 2004; 145: 67–78PubMedCrossRef
10.
go back to reference Raedler TJ, Bymaster FP, Tandon R, et al. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007 Mar; 12(3): 232–46PubMed Raedler TJ, Bymaster FP, Tandon R, et al. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007 Mar; 12(3): 232–46PubMed
11.
go back to reference Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 1999 Nov; 49(11): 921–37PubMedCrossRef Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 1999 Nov; 49(11): 921–37PubMedCrossRef
12.
go back to reference Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 2006 Feb; 9(1): 101–24PubMedCrossRef Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 2006 Feb; 9(1): 101–24PubMedCrossRef
13.
go back to reference Clader JW, Wang Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des 2005; 11(26): 3353–61PubMedCrossRef Clader JW, Wang Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des 2005; 11(26): 3353–61PubMedCrossRef
14.
go back to reference Caulfield MP, Birdsall NJ. International Union of Pharmacology: XVII, classification of muscarinic acetylcholine receptors. Pharmacol Rev 1998 Jun; 50(2): 279–90PubMed Caulfield MP, Birdsall NJ. International Union of Pharmacology: XVII, classification of muscarinic acetylcholine receptors. Pharmacol Rev 1998 Jun; 50(2): 279–90PubMed
15.
go back to reference Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 2007 Sep; 6(9): 721–33PubMedCrossRef Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 2007 Sep; 6(9): 721–33PubMedCrossRef
16.
go back to reference Thomas MJ, Kalivas PW, Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 2008 May; 154(2): 327–42PubMedCrossRef Thomas MJ, Kalivas PW, Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 2008 May; 154(2): 327–42PubMedCrossRef
17.
go back to reference Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007 Nov; 8(11): 844–58PubMedCrossRef Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007 Nov; 8(11): 844–58PubMedCrossRef
18.
go back to reference Lu L, Koya E, Zhai H, et al. Role of ERK in cocaine addiction. Trends Neurosci 2006 Dec; 29(12): 695–703PubMedCrossRef Lu L, Koya E, Zhai H, et al. Role of ERK in cocaine addiction. Trends Neurosci 2006 Dec; 29(12): 695–703PubMedCrossRef
19.
go back to reference Wess J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 2004; 44: 423–50PubMedCrossRef Wess J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 2004; 44: 423–50PubMedCrossRef
20.
go back to reference Oki T, Takagi Y, Inagaki S, et al. Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res 2005 Jan 5; 133(1): 6–11PubMedCrossRef Oki T, Takagi Y, Inagaki S, et al. Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res 2005 Jan 5; 133(1): 6–11PubMedCrossRef
21.
go back to reference Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 2008 Feb; 117(2): 232–43PubMedCrossRef Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 2008 Feb; 117(2): 232–43PubMedCrossRef
22.
go back to reference Felder CC, Bymaster FP, Ward J, et al. Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 2000 Nov 16; 43(23): 4333–53PubMedCrossRef Felder CC, Bymaster FP, Ward J, et al. Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 2000 Nov 16; 43(23): 4333–53PubMedCrossRef
23.
go back to reference Tzavara ET, Bymaster FP, Davis RJ, et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 2004 Sep; 18(12): 1410–2PubMed Tzavara ET, Bymaster FP, Davis RJ, et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 2004 Sep; 18(12): 1410–2PubMed
24.
go back to reference Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 2002; 22(9): 3338–41PubMed Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 2002; 22(9): 3338–41PubMed
25.
go back to reference Picciotto MR, Zoli M, Lena C, et al. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 1995 Mar 2; 374(6517): 65–7PubMedCrossRef Picciotto MR, Zoli M, Lena C, et al. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 1995 Mar 2; 374(6517): 65–7PubMedCrossRef
26.
go back to reference Epping-Jordan MP, Watkins SS, Koob GF, et al. Dramatic decreases in brain reward function during nicotine withdrawal. Nature 1998 May 7; 393(6680): 76–9PubMedCrossRef Epping-Jordan MP, Watkins SS, Koob GF, et al. Dramatic decreases in brain reward function during nicotine withdrawal. Nature 1998 May 7; 393(6680): 76–9PubMedCrossRef
27.
28.
go back to reference Kahlig KM, Binda F, Khoshbouei H, et al. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 2005 Mar 1; 102(9): 3495–500PubMedCrossRef Kahlig KM, Binda F, Khoshbouei H, et al. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 2005 Mar 1; 102(9): 3495–500PubMedCrossRef
29.
go back to reference Tzschentke TM, Schmidt WJ. Glutamatergic mechanisms in addiction. Mol Psychiatry 2003 Apr; 8(4): 373–82PubMedCrossRef Tzschentke TM, Schmidt WJ. Glutamatergic mechanisms in addiction. Mol Psychiatry 2003 Apr; 8(4): 373–82PubMedCrossRef
30.
go back to reference Di Chiara G, Morelli M, Consolo S. Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/ NMDA interactions. Trends Neurosci 1994 Jun; 17(6): 228–33PubMedCrossRef Di Chiara G, Morelli M, Consolo S. Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/ NMDA interactions. Trends Neurosci 1994 Jun; 17(6): 228–33PubMedCrossRef
31.
go back to reference Forster GL, Blaha CD. Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 2000 Oct; 12(10): 3596–604PubMedCrossRef Forster GL, Blaha CD. Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 2000 Oct; 12(10): 3596–604PubMedCrossRef
32.
go back to reference Woolf NJ, Butcher LL. Cholinergic systems in the rat brain: III, projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 1986 May; 16(5): 603–37PubMedCrossRef Woolf NJ, Butcher LL. Cholinergic systems in the rat brain: III, projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 1986 May; 16(5): 603–37PubMedCrossRef
33.
go back to reference Barazangi N, Role LW. Nicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala. J Neurophysiol 2001 Jul; 86(1): 463–74PubMed Barazangi N, Role LW. Nicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala. J Neurophysiol 2001 Jul; 86(1): 463–74PubMed
34.
go back to reference Calabresi P, Picconi B, Parnetti L, et al. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol 2006 Nov; 5(11): 974–83PubMedCrossRef Calabresi P, Picconi B, Parnetti L, et al. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol 2006 Nov; 5(11): 974–83PubMedCrossRef
35.
go back to reference Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci 2006 Mar; 29(3): 125–31PubMedCrossRef Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci 2006 Mar; 29(3): 125–31PubMedCrossRef
36.
go back to reference Bertorelli R, Consolo S. D1 and D2 dopaminergic regulation of acetylcholine release from striata of freely moving rats. J Neurochem 1990 Jun; 54(6): 2145–8PubMedCrossRef Bertorelli R, Consolo S. D1 and D2 dopaminergic regulation of acetylcholine release from striata of freely moving rats. J Neurochem 1990 Jun; 54(6): 2145–8PubMedCrossRef
37.
go back to reference Berlanga ML, Olsen CM, Chen V, et al. Cholinergic interneurons of the nucleus accumbens and dorsal striatum are activated by the self-administration of cocaine. Neuroscience 2003; 120(4): 1149–56PubMedCrossRef Berlanga ML, Olsen CM, Chen V, et al. Cholinergic interneurons of the nucleus accumbens and dorsal striatum are activated by the self-administration of cocaine. Neuroscience 2003; 120(4): 1149–56PubMedCrossRef
38.
go back to reference Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001; 24: 167–202PubMedCrossRef Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001; 24: 167–202PubMedCrossRef
39.
go back to reference Sarter M, Bruno JP, Parikh V, et al. Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. EXS 2006; 98: 65–86PubMed Sarter M, Bruno JP, Parikh V, et al. Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. EXS 2006; 98: 65–86PubMed
40.
go back to reference Ersche KD, Clark L, London M, et al. Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology 2006; 31(5): 1036–47PubMedCrossRef Ersche KD, Clark L, London M, et al. Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology 2006; 31(5): 1036–47PubMedCrossRef
41.
go back to reference Verdejo-Garcia A, Benbrook A, Funderburk F, et al. The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa Gambling Task. Drug Alcohol Depend 2007 Sep 6; 90(1): 2–11PubMedCrossRef Verdejo-Garcia A, Benbrook A, Funderburk F, et al. The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa Gambling Task. Drug Alcohol Depend 2007 Sep 6; 90(1): 2–11PubMedCrossRef
42.
go back to reference Verdejo-Garcia AJ, Perales JC, Perez-Garcia M. Cognitive impulsivity in cocaine and heroin polysubstance abusers. Addict Behav 2007 May; 32(5): 950–66PubMedCrossRef Verdejo-Garcia AJ, Perales JC, Perez-Garcia M. Cognitive impulsivity in cocaine and heroin polysubstance abusers. Addict Behav 2007 May; 32(5): 950–66PubMedCrossRef
43.
go back to reference Rogers RD, Robbins TW. Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 2001; 11(2): 250–7PubMedCrossRef Rogers RD, Robbins TW. Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 2001; 11(2): 250–7PubMedCrossRef
44.
go back to reference Jovanovski D, Erb S, Zakzanis KK. Neurocognitive deficits in cocaine users: a quantitative review of the evidence. J Clin Exp Neuropsychol 2005; 27(2): 189–204PubMedCrossRef Jovanovski D, Erb S, Zakzanis KK. Neurocognitive deficits in cocaine users: a quantitative review of the evidence. J Clin Exp Neuropsychol 2005; 27(2): 189–204PubMedCrossRef
45.
go back to reference Bolla KI, Rothman R, Cadet JL. Dose-related neurobehavioral effects of chronic cocaine use. J Neuropsychiatry Clin Neurosci 1999; 11(3): 361–9PubMed Bolla KI, Rothman R, Cadet JL. Dose-related neurobehavioral effects of chronic cocaine use. J Neuropsychiatry Clin Neurosci 1999; 11(3): 361–9PubMed
46.
go back to reference Volkow ND, Wang GJ, Fowler JS, et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 2002 Mar 1; 43(3): 181–7PubMedCrossRef Volkow ND, Wang GJ, Fowler JS, et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 2002 Mar 1; 43(3): 181–7PubMedCrossRef
47.
go back to reference Capriles N, Rodaros D, Sorge RE, et al. A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology 2003 Jul; 168(1–2): 66–74PubMedCrossRef Capriles N, Rodaros D, Sorge RE, et al. A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology 2003 Jul; 168(1–2): 66–74PubMedCrossRef
48.
go back to reference Di Pietro NC, Black YD, Kantak KM. Context-dependent prefrontal cortex regulation of cocaine self-administration and reinstatement behaviors in rats. Eur J Neurosci 2006 Dec; 24(11): 3285–98PubMedCrossRef Di Pietro NC, Black YD, Kantak KM. Context-dependent prefrontal cortex regulation of cocaine self-administration and reinstatement behaviors in rats. Eur J Neurosci 2006 Dec; 24(11): 3285–98PubMedCrossRef
49.
go back to reference Fuchs RA, Evans KA, Ledford CC, et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 2005 Feb; 30(2): 296–309PubMedCrossRef Fuchs RA, Evans KA, Ledford CC, et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 2005 Feb; 30(2): 296–309PubMedCrossRef
50.
go back to reference Ichikawa J, Chung YC, Li Z, et al. Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002 Dec 20; 958(1): 176–84PubMedCrossRef Ichikawa J, Chung YC, Li Z, et al. Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002 Dec 20; 958(1): 176–84PubMedCrossRef
51.
go back to reference Zmarowski A, Sarter M, Bruno JP. Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release. Synapse 2007 Mar; 61(3): 115–23PubMedCrossRef Zmarowski A, Sarter M, Bruno JP. Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release. Synapse 2007 Mar; 61(3): 115–23PubMedCrossRef
52.
go back to reference Ikemoto S, Goeders NE. Intra-medial prefrontal cortex injections of scopolamine increase instrumental responses for cocaine: an intravenous self-administration study in rats. Brain Res Bull 2000 Jan 15; 51(2): 151–8PubMedCrossRef Ikemoto S, Goeders NE. Intra-medial prefrontal cortex injections of scopolamine increase instrumental responses for cocaine: an intravenous self-administration study in rats. Brain Res Bull 2000 Jan 15; 51(2): 151–8PubMedCrossRef
53.
go back to reference Mansvelder HD, van Aerde KI, Couey JJ, et al. Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology (Berl) 2006; 184(3–4): 292–305CrossRef Mansvelder HD, van Aerde KI, Couey JJ, et al. Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology (Berl) 2006; 184(3–4): 292–305CrossRef
54.
go back to reference Hikida T, Kaneko S, Isobe T, et al. Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc Natl Acad Sci U S A 2001 Nov 6; 98(23): 13351–4PubMedCrossRef Hikida T, Kaneko S, Isobe T, et al. Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc Natl Acad Sci U S A 2001 Nov 6; 98(23): 13351–4PubMedCrossRef
55.
go back to reference de la Garza R, Johanson CE. Effects of haloperidol and physostigmine on self-administration of local anesthetics. Pharmacol Biochem Behav 1982 Dec; 17(6): 1295–9PubMedCrossRef de la Garza R, Johanson CE. Effects of haloperidol and physostigmine on self-administration of local anesthetics. Pharmacol Biochem Behav 1982 Dec; 17(6): 1295–9PubMedCrossRef
56.
go back to reference Hikida T, Kitabatake Y, Pastan I, et al. Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proc Natl Acad Sci U S A 2003 May 13; 100(10): 6169–73PubMedCrossRef Hikida T, Kitabatake Y, Pastan I, et al. Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proc Natl Acad Sci U S A 2003 May 13; 100(10): 6169–73PubMedCrossRef
57.
go back to reference Andersen MB, Werge T, Fink-Jensen A. The acetylcholinesterase inhibitor galantamine inhibits d-amphetamine-induced psychotic-like behavior in Cebus monkeys. J Pharmacol Exp Ther 2007 Jun; 321(3): 1179–82PubMedCrossRef Andersen MB, Werge T, Fink-Jensen A. The acetylcholinesterase inhibitor galantamine inhibits d-amphetamine-induced psychotic-like behavior in Cebus monkeys. J Pharmacol Exp Ther 2007 Jun; 321(3): 1179–82PubMedCrossRef
58.
go back to reference Takamatsu Y, Yamanishi Y, Hagino Y, et al. Differential effects of donepezil on methamphetamine and cocaine dependencies. Ann N Y Acad Sci 2006 Aug; 1074: 418–26PubMedCrossRef Takamatsu Y, Yamanishi Y, Hagino Y, et al. Differential effects of donepezil on methamphetamine and cocaine dependencies. Ann N Y Acad Sci 2006 Aug; 1074: 418–26PubMedCrossRef
59.
go back to reference Hiranita T, Nawata Y, Sakimura K, et al. Suppression of methamphetamine-seeking behavior by nicotinic agonists. Proc Natl Acad Sci U S A 2006 May 30; 103(22): 8523–7PubMedCrossRef Hiranita T, Nawata Y, Sakimura K, et al. Suppression of methamphetamine-seeking behavior by nicotinic agonists. Proc Natl Acad Sci U S A 2006 May 30; 103(22): 8523–7PubMedCrossRef
60.
go back to reference Bechtholt AJ, Mark GP. Enhancement of cocaine-seeking behavior by repeated nicotine exposure in rats. Psychopharmacology 2002 Jul; 162(2): 178–85PubMedCrossRef Bechtholt AJ, Mark GP. Enhancement of cocaine-seeking behavior by repeated nicotine exposure in rats. Psychopharmacology 2002 Jul; 162(2): 178–85PubMedCrossRef
61.
go back to reference Hansen ST, Mark GP. The nicotinic acetylcholine receptor antagonist mecamylamine prevents escalation of cocaine self-administration in rats with extended daily access. Psychopharmacology 2007 Sep; 194(1): 53–61PubMedCrossRef Hansen ST, Mark GP. The nicotinic acetylcholine receptor antagonist mecamylamine prevents escalation of cocaine self-administration in rats with extended daily access. Psychopharmacology 2007 Sep; 194(1): 53–61PubMedCrossRef
62.
go back to reference Kelly PH, Miller RJ. The interaction of neuroleptic and muscarinic agents with central dopaminergic systems. Br J Pharmacol 1975 May; 54(1): 115–21PubMed Kelly PH, Miller RJ. The interaction of neuroleptic and muscarinic agents with central dopaminergic systems. Br J Pharmacol 1975 May; 54(1): 115–21PubMed
63.
go back to reference Mark GP, Kinney AE, Grubb MC, et al. Injection of oxotremorine in nucleus accumbens shell reduces cocaine but not food self-administration in rats. Brain Res 2006 Dec 6; 1123(1): 51–9PubMedCrossRef Mark GP, Kinney AE, Grubb MC, et al. Injection of oxotremorine in nucleus accumbens shell reduces cocaine but not food self-administration in rats. Brain Res 2006 Dec 6; 1123(1): 51–9PubMedCrossRef
64.
go back to reference Rasmussen T, Sauerberg P, Nielsen EB, et al. Muscarinic receptor agonists decrease cocaine self-administration rates in drug-naive mice. Eur J Pharmacol 2000 Aug 25; 402(3): 241–6PubMedCrossRef Rasmussen T, Sauerberg P, Nielsen EB, et al. Muscarinic receptor agonists decrease cocaine self-administration rates in drug-naive mice. Eur J Pharmacol 2000 Aug 25; 402(3): 241–6PubMedCrossRef
65.
go back to reference Wilson MC, Schuster CR. Cholinergic influence on intravenous cocaine self-administration by rhesus monkeys. Pharmacol Biochem Behav 1973 Nov–Dec; 1(6): 643–9PubMedCrossRef Wilson MC, Schuster CR. Cholinergic influence on intravenous cocaine self-administration by rhesus monkeys. Pharmacol Biochem Behav 1973 Nov–Dec; 1(6): 643–9PubMedCrossRef
66.
go back to reference Wang JQ, McGinty JF. Muscarinic receptors regulate striatal neuropeptide gene expression in normal and amphetamine-treated rats. Neuroscience 1996 Nov; 75(1): 43–56PubMedCrossRef Wang JQ, McGinty JF. Muscarinic receptors regulate striatal neuropeptide gene expression in normal and amphetamine-treated rats. Neuroscience 1996 Nov; 75(1): 43–56PubMedCrossRef
67.
go back to reference Ranaldi R, Woolverton WL. Self-administration of cocaine: scopolamine combinations by rhesus monkeys. Psychopharmacology 2002 Jun; 161(4): 442–8PubMedCrossRef Ranaldi R, Woolverton WL. Self-administration of cocaine: scopolamine combinations by rhesus monkeys. Psychopharmacology 2002 Jun; 161(4): 442–8PubMedCrossRef
68.
go back to reference Gerber DJ, Sotnikova TD, Gainetdinov RR, et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A 2001 Dec 18; 98(26): 15312–7PubMedCrossRef Gerber DJ, Sotnikova TD, Gainetdinov RR, et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A 2001 Dec 18; 98(26): 15312–7PubMedCrossRef
69.
go back to reference Carrigan KA, Dykstra LA. Behavioral effects of morphine and cocaine in M1 muscarinic acetylcholine receptor-deficient mice. Psychopharmacology 2007 May; 191(4): 985–93PubMedCrossRef Carrigan KA, Dykstra LA. Behavioral effects of morphine and cocaine in M1 muscarinic acetylcholine receptor-deficient mice. Psychopharmacology 2007 May; 191(4): 985–93PubMedCrossRef
70.
go back to reference Brady AE, Jones CK, Bridges TM, et al. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 2008 Dec; 327(3): 941–53PubMedCrossRef Brady AE, Jones CK, Bridges TM, et al. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 2008 Dec; 327(3): 941–53PubMedCrossRef
71.
go back to reference Thomsen M, Woldbye DP, Wortwein G, et al. Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 2005 Sep 7; 25(36): 8141–9PubMedCrossRef Thomsen M, Woldbye DP, Wortwein G, et al. Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 2005 Sep 7; 25(36): 8141–9PubMedCrossRef
72.
go back to reference Janowsky DS, el-Yousef MK, Davis JM, et al. Antagonistic effects of physostigmine and methylphenidate in man. Am J Psychiatry 1973 Dec; 130(12): 1370–6PubMed Janowsky DS, el-Yousef MK, Davis JM, et al. Antagonistic effects of physostigmine and methylphenidate in man. Am J Psychiatry 1973 Dec; 130(12): 1370–6PubMed
73.
go back to reference De La Garza R, Shoptaw S, Newton TF. Evaluation of the cardiovascular and subjective effects of rivastigmine in combination with methamphetamine in methamphetamine-dependent human volunteers. Int J Neuropsychopharmacol 2008 Sep; 11(6): 729–41 De La Garza R, Shoptaw S, Newton TF. Evaluation of the cardiovascular and subjective effects of rivastigmine in combination with methamphetamine in methamphetamine-dependent human volunteers. Int J Neuropsychopharmacol 2008 Sep; 11(6): 729–41
74.
go back to reference De La Garza 2nd R, Mahoney 3rd JJ, Culbertson C, et al. The acetylcholinesterase inhibitor rivastigmine does not alter total choices for methamphetamine, but may reduce positive subjective effects, in a laboratory model of intravenous self-administration in human volunteers. Pharmacol Biochem Behav 2008 Apr; 89(2): 200–8CrossRef De La Garza 2nd R, Mahoney 3rd JJ, Culbertson C, et al. The acetylcholinesterase inhibitor rivastigmine does not alter total choices for methamphetamine, but may reduce positive subjective effects, in a laboratory model of intravenous self-administration in human volunteers. Pharmacol Biochem Behav 2008 Apr; 89(2): 200–8CrossRef
75.
go back to reference Winhusen TM, Somoza EC, Harrer JM, et al. A placebo-controlled screening trial of tiagabine, sertraline and donepezil as cocaine dependence treatments. Addiction 2005 Mar; 100 Suppl. 1: 68–77CrossRef Winhusen TM, Somoza EC, Harrer JM, et al. A placebo-controlled screening trial of tiagabine, sertraline and donepezil as cocaine dependence treatments. Addiction 2005 Mar; 100 Suppl. 1: 68–77CrossRef
76.
go back to reference Kouri EM, Stull M, Lukas SE. Nicotine alters some of cocaine’s subjective effects in the absence of physiological or pharmacokinetic changes. Pharmacol Biochem Behav 2001 May–Jun; 69(1–2): 209–17PubMedCrossRef Kouri EM, Stull M, Lukas SE. Nicotine alters some of cocaine’s subjective effects in the absence of physiological or pharmacokinetic changes. Pharmacol Biochem Behav 2001 May–Jun; 69(1–2): 209–17PubMedCrossRef
77.
go back to reference Sobel BF, Sigmon SC, Griffiths RR. Transdermal nicotine maintenance attenuates the subjective and reinforcing effects of intravenous nicotine, but not cocaine or caffeine, in cigarette-smoking stimulant abusers. Neuropsychopharmacology 2004 May; 29(5): 991–1003PubMedCrossRef Sobel BF, Sigmon SC, Griffiths RR. Transdermal nicotine maintenance attenuates the subjective and reinforcing effects of intravenous nicotine, but not cocaine or caffeine, in cigarette-smoking stimulant abusers. Neuropsychopharmacology 2004 May; 29(5): 991–1003PubMedCrossRef
78.
go back to reference Reid MS, Mickalian JD, Delucchi KL, et al. A nicotine antagonist, mecamylamine, reduces cue-induced cocaine craving in cocaine-dependent subjects. Neuropsychopharmacology 1999 Mar; 20(3): 297–307PubMedCrossRef Reid MS, Mickalian JD, Delucchi KL, et al. A nicotine antagonist, mecamylamine, reduces cue-induced cocaine craving in cocaine-dependent subjects. Neuropsychopharmacology 1999 Mar; 20(3): 297–307PubMedCrossRef
79.
go back to reference Reid MS, Angrist B, Baker SA, et al. A placebo controlled, double-blind study of mecamylamine treatment for cocaine dependence in patients enrolled in an opiate replacement program. Subst Abus 2005 Jun; 26(2): 5–14PubMedCrossRef Reid MS, Angrist B, Baker SA, et al. A placebo controlled, double-blind study of mecamylamine treatment for cocaine dependence in patients enrolled in an opiate replacement program. Subst Abus 2005 Jun; 26(2): 5–14PubMedCrossRef
80.
go back to reference Penetar DM, Looby AR, Su Z, et al. Benztropine pretreatment does not affect responses to acute cocaine administration in human volunteers. Hum Psychopharmacol 2006 Dec; 21(8): 549–59PubMedCrossRef Penetar DM, Looby AR, Su Z, et al. Benztropine pretreatment does not affect responses to acute cocaine administration in human volunteers. Hum Psychopharmacol 2006 Dec; 21(8): 549–59PubMedCrossRef
81.
go back to reference Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; (1): CD005593 Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; (1): CD005593
82.
go back to reference Farlow M. A clinical overview of cholinesterase inhibitors in Alzheimer’s disease. Int Psychogeriatr 2002; 14Suppl. 1: 93–126PubMedCrossRef Farlow M. A clinical overview of cholinesterase inhibitors in Alzheimer’s disease. Int Psychogeriatr 2002; 14Suppl. 1: 93–126PubMedCrossRef
83.
go back to reference Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 2004 Oct; 50(4): 433–40PubMedCrossRef Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 2004 Oct; 50(4): 433–40PubMedCrossRef
84.
go back to reference Camicioli R, Gauthier S. Clinical trials in Parkinson’s disease dementia and dementia with Lewy bodies. Can J Neurol Sci 2007 Mar; 34Suppl. 1: S109–17PubMed Camicioli R, Gauthier S. Clinical trials in Parkinson’s disease dementia and dementia with Lewy bodies. Can J Neurol Sci 2007 Mar; 34Suppl. 1: S109–17PubMed
85.
go back to reference Ochoa EL, Clark E. Galantamine may improve attention and speech in schizophrenia. Hum Psychopharmacol 2006 Mar; 21(2): 127–8PubMedCrossRef Ochoa EL, Clark E. Galantamine may improve attention and speech in schizophrenia. Hum Psychopharmacol 2006 Mar; 21(2): 127–8PubMedCrossRef
86.
go back to reference Khateb A, Ammann J, Annoni JM, et al. Cognition-enhancing effects of donepezil in traumatic brain injury. Eur Neurol 2005; 54(1): 39–45PubMedCrossRef Khateb A, Ammann J, Annoni JM, et al. Cognition-enhancing effects of donepezil in traumatic brain injury. Eur Neurol 2005; 54(1): 39–45PubMedCrossRef
87.
go back to reference Marco-Contelles J, do Carmo Carreiras M, Rodriguez C, et al. Synthesis and pharmacology of galantamine. Chem Rev 2006; 106(1): 116–33PubMedCrossRef Marco-Contelles J, do Carmo Carreiras M, Rodriguez C, et al. Synthesis and pharmacology of galantamine. Chem Rev 2006; 106(1): 116–33PubMedCrossRef
88.
go back to reference Schilstrom B, Ivanov VB, Wiker C, et al. Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors. Neuropsychopharmacology 2007; 32(1): 43–53PubMedCrossRef Schilstrom B, Ivanov VB, Wiker C, et al. Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors. Neuropsychopharmacology 2007; 32(1): 43–53PubMedCrossRef
89.
go back to reference Diehl A, Nakovics H, Croissant B, et al. Galantamine reduces smoking in alcohol-dependent patients: a randomized, placebo-controlled trial. Int J Clin Pharmacol Ther 2006 Dec; 44(12): 614–22PubMed Diehl A, Nakovics H, Croissant B, et al. Galantamine reduces smoking in alcohol-dependent patients: a randomized, placebo-controlled trial. Int J Clin Pharmacol Ther 2006 Dec; 44(12): 614–22PubMed
90.
go back to reference Aharonovich E, Hasin DS, Brooks AC, et al. Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend 2006; 81(3): 313–22PubMedCrossRef Aharonovich E, Hasin DS, Brooks AC, et al. Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend 2006; 81(3): 313–22PubMedCrossRef
91.
go back to reference Aharonovich E, Nunes E, Hasin D. Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug Alcohol Depend 2003; 71(2): 207–11PubMedCrossRef Aharonovich E, Nunes E, Hasin D. Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug Alcohol Depend 2003; 71(2): 207–11PubMedCrossRef
92.
go back to reference Streeter CC, Terhune DB, Whitfield TH, et al. Performance on the stroop predicts treatment compliance in cocaine-dependent individuals. Neuropsychopharmacology 2008 Mar; 33(4): 827–36PubMedCrossRef Streeter CC, Terhune DB, Whitfield TH, et al. Performance on the stroop predicts treatment compliance in cocaine-dependent individuals. Neuropsychopharmacology 2008 Mar; 33(4): 827–36PubMedCrossRef
93.
go back to reference Etter JF, Lukas RJ, Benowitz NL, et al. Cytisine for smoking cessation: a research agenda. Drug Alcohol Depend 2008 Jan 1; 92(1–3): 3–8PubMedCrossRef Etter JF, Lukas RJ, Benowitz NL, et al. Cytisine for smoking cessation: a research agenda. Drug Alcohol Depend 2008 Jan 1; 92(1–3): 3–8PubMedCrossRef
94.
go back to reference Coe JW, Brooks PR, Vetelino MG, et al. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 2005; 48(10): 3474–7PubMedCrossRef Coe JW, Brooks PR, Vetelino MG, et al. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 2005; 48(10): 3474–7PubMedCrossRef
95.
go back to reference Dunbar G, Boeijinga PH, Demazieres A, et al. Effects of TC-1734 (AZD3480), a selective neuronal nicotinic receptor agonist, on cognitive performance and the EEG of young healthy male volunteers. Psychopharmacology 2007 May; 191(4): 919–29PubMedCrossRef Dunbar G, Boeijinga PH, Demazieres A, et al. Effects of TC-1734 (AZD3480), a selective neuronal nicotinic receptor agonist, on cognitive performance and the EEG of young healthy male volunteers. Psychopharmacology 2007 May; 191(4): 919–29PubMedCrossRef
96.
go back to reference CHANTIX™ oral tablets [product information]. New York: Pfizer Labs, 2008 CHANTIX™ oral tablets [product information]. New York: Pfizer Labs, 2008
97.
go back to reference Dwoskin LP, Crooks PA. A novel mechanism of action and potential use for lobeline as a treatment for psycho-stimulant abuse. Biochem Pharmacol 2002 Jan 15; 63(2): 89–98PubMedCrossRef Dwoskin LP, Crooks PA. A novel mechanism of action and potential use for lobeline as a treatment for psycho-stimulant abuse. Biochem Pharmacol 2002 Jan 15; 63(2): 89–98PubMedCrossRef
98.
go back to reference Stead LF, Hughes JR. Lobeline for smoking cessation. Cochrane Database Syst Rev 2000; (2): CD000124 Stead LF, Hughes JR. Lobeline for smoking cessation. Cochrane Database Syst Rev 2000; (2): CD000124
99.
go back to reference Wilhelm CJ, Johnson RA, Eshleman AJ, et al. Lobeline effects on tonic and methamphetamine-induced dopamine release. Biochem Pharmacol 2008 Mar 15; 75(6): 1411–5PubMedCrossRef Wilhelm CJ, Johnson RA, Eshleman AJ, et al. Lobeline effects on tonic and methamphetamine-induced dopamine release. Biochem Pharmacol 2008 Mar 15; 75(6): 1411–5PubMedCrossRef
100.
go back to reference Eyerman DJ, Yamamoto BK. Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. J Pharmacol Exp Ther 2005 Jan; 312(1): 160–9PubMedCrossRef Eyerman DJ, Yamamoto BK. Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. J Pharmacol Exp Ther 2005 Jan; 312(1): 160–9PubMedCrossRef
101.
go back to reference Vocci FJ, Appel NM. Approaches to the development of medications for the treatment of methamphetamine dependence. Addiction 2007 Apr; 102 Suppl. 1: 96–106CrossRef Vocci FJ, Appel NM. Approaches to the development of medications for the treatment of methamphetamine dependence. Addiction 2007 Apr; 102 Suppl. 1: 96–106CrossRef
102.
go back to reference Chan WY, McKinzie DL, Bose S, et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci U S A 2008 Aug 5; 105(31): 10978–83PubMedCrossRef Chan WY, McKinzie DL, Bose S, et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci U S A 2008 Aug 5; 105(31): 10978–83PubMedCrossRef
103.
go back to reference May LT, Avlani VA, Langmead CJ, et al. Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol Pharmacol 2007 Aug; 72(2): 463–76PubMedCrossRef May LT, Avlani VA, Langmead CJ, et al. Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol Pharmacol 2007 Aug; 72(2): 463–76PubMedCrossRef
104.
go back to reference Surig U, Gaal K, Kostenis E, et al. Muscarinic allosteric modulators: atypical structure-activity-relationships in bispyridinium-type compounds. Arch Pharm (Weinheim) 2006 Apr; 339(4): 207–12CrossRef Surig U, Gaal K, Kostenis E, et al. Muscarinic allosteric modulators: atypical structure-activity-relationships in bispyridinium-type compounds. Arch Pharm (Weinheim) 2006 Apr; 339(4): 207–12CrossRef
105.
go back to reference Valant C, Gregory KJ, Hall NE, et al. A novel mechanism of G protein-coupled receptor functional selectivity: muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J Biol Chem 2008 Oct 24; 283(43): 29312–21PubMedCrossRef Valant C, Gregory KJ, Hall NE, et al. A novel mechanism of G protein-coupled receptor functional selectivity: muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J Biol Chem 2008 Oct 24; 283(43): 29312–21PubMedCrossRef
Metadata
Title
Cholinergic Functioning in Stimulant Addiction
Implications for Medications Development
Authors
Dr Mehmet Sofuoglu
Marc Mooney
Publication date
01-11-2009
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 11/2009
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/11310920-000000000-00000

Other articles of this Issue 11/2009

CNS Drugs 11/2009 Go to the issue

Current Opinion

Of Mice and Men

Therapy in Practice

Adjustment Disorder