Skip to main content
Top
Published in: Population Health Metrics 1/2017

Open Access 01-12-2017 | Research

Choice of relative or cause-specific approach to cancer survival analysis impacts estimates differentially by cancer type, population, and application: evidence from a Canadian population-based cohort study

Authors: Diana R. Withrow, Jason D. Pole, E. Diane Nishri, Michael Tjepkema, Loraine D. Marrett

Published in: Population Health Metrics | Issue 1/2017

Login to get access

Abstract

Background

Cause-specific (CS) and net survival in a relative survival framework (RS) are two of the most common methods for estimating cancer survival. In this paper, we assess the differences in results produced by two permutations of cause-specific and relative survival applied to estimating cancer survival and disparities in cancer survival, using data from First Nations and non-Aboriginal populations in Canada.

Methods

Subjects were members of the 1991 Canadian Census Mortality Cohort, a population-based cohort of adult respondents to the 1991 Long Form Census who have been followed up for incident cancers and death through linkage to administrative databases. We compared four methods: relative survival analyses with ethnicity-specific life tables (RS-ELT); relative survival with general population life tables (RS-GLT); cause-specific survival with a broad definition of cancer death (CS-Broad); and cause-specific survival with a narrow definition of cause of death (CS-Narrow) and applied these to the nine most common cancers among First Nations.

Results

Apart from breast and prostate cancers, RS-ELT, RS-GLT, and CS-Broad tended to produce similar estimates of age-standardized five-year survival, whereas CS-Narrow yielded higher estimates of survival. CS-Narrow estimates were particularly unlike those based on the other methods for cancers of the digestive and respiratory tracts. Estimates of disparities in survival were generally comparable across the four methods except for breast and prostate cancers.

Conclusions

Cancer surveillance efforts in sub-populations defined by race, ethnicity, geography, socioeconomic status, or similar factors are necessary for identifying disparities and monitoring progress toward reducing them. In the absence of routine monitoring of cancer survival and cancer survival disparities in these populations, estimates generated by different methods will inevitably be compared over time and across populations. In this study, we demonstrate that caution should be exercised in making these comparisons, particularly in interpreting cause-specific survival rates with an unknown or narrow definition of cancer death and in estimates of breast and prostate cancer survival and/or disparities in survival generated by different methods.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dickman PW, Coviello E. Estimating and modeling relative survival. Stata J. 2015;15(1):186–215. Dickman PW, Coviello E. Estimating and modeling relative survival. Stata J. 2015;15(1):186–215.
2.
go back to reference Dickman PW, Lambert PC, Coviello E, Rutherford MJ. Estimating net survival in population-based cancer studies. Int J Cancer. 2013;133(2):519–21.CrossRefPubMed Dickman PW, Lambert PC, Coviello E, Rutherford MJ. Estimating net survival in population-based cancer studies. Int J Cancer. 2013;133(2):519–21.CrossRefPubMed
3.
go back to reference Dickman PW, Adami H-O. Interpreting trends in cancer patient survival. J Intern Med. 2006;260(2):103–17.CrossRefPubMed Dickman PW, Adami H-O. Interpreting trends in cancer patient survival. J Intern Med. 2006;260(2):103–17.CrossRefPubMed
4.
go back to reference Sarfati D, Blakely T, Pearce N. Measuring cancer survival in populations: relative survival vs cancer-specific survival. Int J Epidemiol. 2010;39(2):598–610.CrossRefPubMed Sarfati D, Blakely T, Pearce N. Measuring cancer survival in populations: relative survival vs cancer-specific survival. Int J Epidemiol. 2010;39(2):598–610.CrossRefPubMed
5.
go back to reference Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the international cancer benchmarking partnership): an analysis of population-based cancer registry data. Lancet Elsevier. 2011;377(9760):127–38.CrossRef Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the international cancer benchmarking partnership): an analysis of population-based cancer registry data. Lancet Elsevier. 2011;377(9760):127–38.CrossRef
6.
go back to reference Coleman MP, Quaresma M, Berrino F, Lutz J-M, De Angelis R, Capocaccia R, et al. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 2008;9(8):730–56.CrossRefPubMed Coleman MP, Quaresma M, Berrino F, Lutz J-M, De Angelis R, Capocaccia R, et al. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 2008;9(8):730–56.CrossRefPubMed
7.
go back to reference Rachet B, Coleman MP. Commentary: estimating cancer survival—which is the right approach? Int J Epidemiol. 2010;39(2):dyq053–612. Rachet B, Coleman MP. Commentary: estimating cancer survival—which is the right approach? Int J Epidemiol. 2010;39(2):dyq053–612.
9.
go back to reference Howlader N, Ries LAG, Mariotto AB, Reichman ME, Ruhl J, Cronin KA. Improved estimates of cancer-specific survival rates from population-based data. J Natl Cancer Ins. 2010;102(20):1584–98.CrossRef Howlader N, Ries LAG, Mariotto AB, Reichman ME, Ruhl J, Cronin KA. Improved estimates of cancer-specific survival rates from population-based data. J Natl Cancer Ins. 2010;102(20):1584–98.CrossRef
10.
go back to reference Howlader N, Ries LAG, Mariotto AB, Reichman ME, Ruhl J, Cronin KA. Improved estimates of cancer-specific survival rates from population-based data. JNCI. 2010;102(20):1584–98.CrossRefPubMedPubMedCentral Howlader N, Ries LAG, Mariotto AB, Reichman ME, Ruhl J, Cronin KA. Improved estimates of cancer-specific survival rates from population-based data. JNCI. 2010;102(20):1584–98.CrossRefPubMedPubMedCentral
11.
go back to reference Dickman PW, Auvinen A, Voutilainen ET, Hakulinen T. Measuring social class differences in cancer patient survival: is it necessary to control for social class differences in general population mortality? A Finnish population-based study. J Epidemiol Community Health. 1998;52(11):727–34. Dickman PW, Auvinen A, Voutilainen ET, Hakulinen T. Measuring social class differences in cancer patient survival: is it necessary to control for social class differences in general population mortality? A Finnish population-based study. J Epidemiol Community Health. 1998;52(11):727–34.
12.
go back to reference Skyrud KD, Bray F, Møller B. A comparison of relative and cause-specific survival by cancer site, age and time since diagnosis. Int J Cancer. 2014;135(1):196–203.CrossRefPubMed Skyrud KD, Bray F, Møller B. A comparison of relative and cause-specific survival by cancer site, age and time since diagnosis. Int J Cancer. 2014;135(1):196–203.CrossRefPubMed
13.
go back to reference Gamel JW, Vogel RL. Non-parametric comparison of relative versus cause-specific survival in surveillance, Epidemiology and end results (SEER) programme breast cancer patients. Stat Methods Med Res. 2001;10(5):339–52.CrossRefPubMed Gamel JW, Vogel RL. Non-parametric comparison of relative versus cause-specific survival in surveillance, Epidemiology and end results (SEER) programme breast cancer patients. Stat Methods Med Res. 2001;10(5):339–52.CrossRefPubMed
14.
go back to reference Wilkins R, Tjepkema M, Mustard C, Choinière R. The Canadian census mortality follow-up study, 1991 through 2001. Health Rep. 2008;19(3):25–43.PubMed Wilkins R, Tjepkema M, Mustard C, Choinière R. The Canadian census mortality follow-up study, 1991 through 2001. Health Rep. 2008;19(3):25–43.PubMed
15.
go back to reference Peters PA, Tjepkema M, Wilkins R, Finès P, Crouse DL, Chan PCW, et al. Data resource profile: 1991 Canadian census cohort. Int J Epidemiol. 2013;42(5):dyt147–326. Peters PA, Tjepkema M, Wilkins R, Finès P, Crouse DL, Chan PCW, et al. Data resource profile: 1991 Canadian census cohort. Int J Epidemiol. 2013;42(5):dyt147–326.
17.
go back to reference Royston P, Lambert PC. Flexible Parametric Survival Analysis Using Stata. College Station: Stata Press; 2011. Royston P, Lambert PC. Flexible Parametric Survival Analysis Using Stata. College Station: Stata Press; 2011.
18.
go back to reference Corazziari I, Quinn M, Capocaccia R. Standard cancer patient population for age standardising survival ratios. Eur J Cancer. 2004;40(15):2307–16.CrossRefPubMed Corazziari I, Quinn M, Capocaccia R. Standard cancer patient population for age standardising survival ratios. Eur J Cancer. 2004;40(15):2307–16.CrossRefPubMed
19.
go back to reference Brenner H, Rachet B. Hybrid analysis for up-to-date long-term survival rates in cancer registries with delayed recording of incident cases. Eur J Cancer Elsevier. 2004;40(16):2494–501.CrossRef Brenner H, Rachet B. Hybrid analysis for up-to-date long-term survival rates in cancer registries with delayed recording of incident cases. Eur J Cancer Elsevier. 2004;40(16):2494–501.CrossRef
20.
go back to reference Withrow DR, Racey CS, Jamal S. A critical review of methods for assessing cancer survival disparities in indigenous population. Ann Epidemiol Elsevier. 2016;26(8):579–91.CrossRef Withrow DR, Racey CS, Jamal S. A critical review of methods for assessing cancer survival disparities in indigenous population. Ann Epidemiol Elsevier. 2016;26(8):579–91.CrossRef
21.
go back to reference Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang X-S, et al. Global surveillance of cancer survival 1995–2009. Lancet. 2014;24:1–34. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang X-S, et al. Global surveillance of cancer survival 1995–2009. Lancet. 2014;24:1–34.
23.
go back to reference Zappa M, Ciatto S, Bonardi R, Mazzotta A. Overdiagnosis of prostate carcinoma by screening: an estimate based on the results of the Florence screening pilot study. Ann Oncol. 1998;9:1297–300.CrossRefPubMed Zappa M, Ciatto S, Bonardi R, Mazzotta A. Overdiagnosis of prostate carcinoma by screening: an estimate based on the results of the Florence screening pilot study. Ann Oncol. 1998;9:1297–300.CrossRefPubMed
24.
go back to reference McGregor M, Boivin J, McLean RG, Hanley JA. Screening for prostate cancer: estimating the magnitude of overdetection. CMAJ. 1998;159(11):1368-72. McGregor M, Boivin J, McLean RG, Hanley JA. Screening for prostate cancer: estimating the magnitude of overdetection. CMAJ. 1998;159(11):1368-72.
25.
go back to reference Zeliadt SB, Etzioni R, Ramsey SD, Penson DF, Potosky AL. Trends in treatment costs for localized prostate cancer. Med Care. 2007;8:1–6. Zeliadt SB, Etzioni R, Ramsey SD, Penson DF, Potosky AL. Trends in treatment costs for localized prostate cancer. Med Care. 2007;8:1–6.
26.
go back to reference Brenner H. Long-term survival rates of patients with prostate cancer in the prostate-specific antigen screening era: population-based estimates for the year 2000 by period analysis. J Clin Oncol. 2004 8;23(3):441–7.CrossRefPubMed Brenner H. Long-term survival rates of patients with prostate cancer in the prostate-specific antigen screening era: population-based estimates for the year 2000 by period analysis. J Clin Oncol. 2004 8;23(3):441–7.CrossRefPubMed
27.
go back to reference Cho H, Mariotto AB, Mann BS, Klabunde CN, Feuer EJ. Assessing non-cancer-related health status of US cancer patients: other-cause survival and comorbidity prevalence. Am J Epidemiol Oxford University Press. 2013;178(3):339–49.CrossRef Cho H, Mariotto AB, Mann BS, Klabunde CN, Feuer EJ. Assessing non-cancer-related health status of US cancer patients: other-cause survival and comorbidity prevalence. Am J Epidemiol Oxford University Press. 2013;178(3):339–49.CrossRef
28.
go back to reference Sheppard AJ, Chiarelli AM, Marrett LD, Mirea L, Nishri ED, Trudeau ME. Detection of later stage breast cancer in first Nations women in Ontario. Canada Can J Pub Health. 2010;1:101–5. Sheppard AJ, Chiarelli AM, Marrett LD, Mirea L, Nishri ED, Trudeau ME. Detection of later stage breast cancer in first Nations women in Ontario. Canada Can J Pub Health. 2010;1:101–5.
29.
go back to reference Dignam JJ, Huang L, Ries L, Reichman M, Mariotto A, Feuer E. Estimating breast cancer-specific and other-cause mortality in clinical trial and population-based cancer registry cohorts. Cancer. 2009 15;115(22):5272–83.CrossRefPubMedPubMedCentral Dignam JJ, Huang L, Ries L, Reichman M, Mariotto A, Feuer E. Estimating breast cancer-specific and other-cause mortality in clinical trial and population-based cancer registry cohorts. Cancer. 2009 15;115(22):5272–83.CrossRefPubMedPubMedCentral
30.
go back to reference Berry DA, Baines CJ, Baum M, Dickersin K, Fletcher SW, Gøtzsche PC, et al. Flawed inferences about screening mammography's benefit based on observational data. J Clin Oncol. 2009;1:27(4). Berry DA, Baines CJ, Baum M, Dickersin K, Fletcher SW, Gøtzsche PC, et al. Flawed inferences about screening mammography's benefit based on observational data. J Clin Oncol. 2009;1:27(4).
31.
go back to reference Perme MP, Estève J, Rachet B. Analysing population-based cancer survival – settling the controversies. BMC Cancer BioMed Central. 2016;16(1):933. Perme MP, Estève J, Rachet B. Analysing population-based cancer survival – settling the controversies. BMC Cancer BioMed Central. 2016;16(1):933.
32.
go back to reference Samphier ML, Robertson C, Bloor MJ. A possible artefactual component in specific cause mortality gradients. Social class variations in the clinical accuracy of death certificates. J Epidemiol Community Health. 1988;42(2):138–43.CrossRefPubMedPubMedCentral Samphier ML, Robertson C, Bloor MJ. A possible artefactual component in specific cause mortality gradients. Social class variations in the clinical accuracy of death certificates. J Epidemiol Community Health. 1988;42(2):138–43.CrossRefPubMedPubMedCentral
Metadata
Title
Choice of relative or cause-specific approach to cancer survival analysis impacts estimates differentially by cancer type, population, and application: evidence from a Canadian population-based cohort study
Authors
Diana R. Withrow
Jason D. Pole
E. Diane Nishri
Michael Tjepkema
Loraine D. Marrett
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Population Health Metrics / Issue 1/2017
Electronic ISSN: 1478-7954
DOI
https://doi.org/10.1186/s12963-017-0142-4

Other articles of this Issue 1/2017

Population Health Metrics 1/2017 Go to the issue