Skip to main content
Top
Published in: Cancer Cell International 1/2013

Open Access 01-12-2013 | Primary research

Chemosensetizing and cardioprotective effects of resveratrol in doxorubicin- treated animals

Authors: Abdel-Moneim M Osman, Sameer E Al-Harthi, Ohoud M AlArabi, Mohamed F Elshal, Wafaa S Ramadan, Mohamed N Alaama, Huda M Al-Kreathy, Zoheir A Damanhouri, Osman H Osman

Published in: Cancer Cell International | Issue 1/2013

Login to get access

Abstract

Background

Doxorubicin (DOX), an anthracycline antibiotic is one of the most effective anticancer drug used in the treatment of variety of cancers .Its use is limited by its cardiotoxicity. The present study was designed to assess the role of a natural product resveratrol (RSVL) on sensitization of mammary carcinoma (Ehrlich ascites carcinoma) to the action of DOX and at the same time its protective effect against DOX-induced cardiotoxicity in rats.

Methods

Ehrlich ascites carcinoma bearing mice were used in this study. Percent survival of tumor bearing mice was used for determination of the Cytotoxic activity of DOX in presence and absence of RSVL. Uptake and cell cycle effect of DOX in tumor cells in the presence of RSVL was also determined. Histopatholgical examination of heart tissues after DOX and/or RSVL therapy was also investigated.

Results

DOX at a dose level of 15 mg/kg increased the mean survival time of tumor bearing mice to 21 days compared with 15 days for non tumor-bearing control mice. Administration of RSVL at a dose level of 10 mg/kg simultaneously with DOX increased the mean survival time to 30 days with 70% survival of the tumor-bearing animals. RSVL increased the intracellular level of DOX and there was a strong correlation between the high cellular level of DOX and its cytotoxic activity. Moreover, RSVL treatment showed 4.8 fold inhibition in proliferation index of cells treated with DOX. Histopathological analysis of rat heart tissue after a single dose of DOX (20 mg/kg) showed myocytolysis with congestion of blood vessels, cytoplasmic vacuolization and fragmentation. Concomitant treatment with RSVL, fragmentation of the muscle fiber revealed normal muscle fiber.

Conclusion

This study suggests that RSVL could increase the cytotoxic activity of DOX and at the same time protect against its cardiotoxicity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lefrak EA, Pita J, Rosenheim S, Gofottiebm JA: A clinicopathological analysis of adriamycin cardiotoxicity. Cancer. 1973, 32: 302-314. 10.1002/1097-0142(197308)32:2<302::AID-CNCR2820320205>3.0.CO;2-2.CrossRefPubMed Lefrak EA, Pita J, Rosenheim S, Gofottiebm JA: A clinicopathological analysis of adriamycin cardiotoxicity. Cancer. 1973, 32: 302-314. 10.1002/1097-0142(197308)32:2<302::AID-CNCR2820320205>3.0.CO;2-2.CrossRefPubMed
2.
go back to reference Singal PK, Iliskovic N: Doxorubicin-induced cardiomyopathy. N Engl J Med. 1997, 339: 900-905.CrossRef Singal PK, Iliskovic N: Doxorubicin-induced cardiomyopathy. N Engl J Med. 1997, 339: 900-905.CrossRef
3.
go back to reference Osman AM, Al-Shabanh OA, Al-Harbi MM, Al-Gharabli N, Al-Bekiri A: Effectf of desferrioxamine on the doxorubicin-induced cardiotoxicity and haematotoxicity in mice. Med Sci Res. 1993, 21: 193-194. Osman AM, Al-Shabanh OA, Al-Harbi MM, Al-Gharabli N, Al-Bekiri A: Effectf of desferrioxamine on the doxorubicin-induced cardiotoxicity and haematotoxicity in mice. Med Sci Res. 1993, 21: 193-194.
4.
go back to reference Osman AM, Marowa MN, Amany AE, Omimah AN, Khyyal MT: Effect of methimazole treatment on doxorubicin-induced cardiotoxicity. Food Chem Toxicol. 2009, 47: 2425-2430. 10.1016/j.fct.2009.06.040.CrossRefPubMed Osman AM, Marowa MN, Amany AE, Omimah AN, Khyyal MT: Effect of methimazole treatment on doxorubicin-induced cardiotoxicity. Food Chem Toxicol. 2009, 47: 2425-2430. 10.1016/j.fct.2009.06.040.CrossRefPubMed
5.
go back to reference Al-Kreathy HM, Zoheir AD, Nessar A, Mark S, Osman AM: Mechanisms of cardioprotective effect of aged garlic extract Against doxorubicin-induced cardiotoxicity. Integr Canc Ther. 2011, 15: 364-371. Al-Kreathy HM, Zoheir AD, Nessar A, Mark S, Osman AM: Mechanisms of cardioprotective effect of aged garlic extract Against doxorubicin-induced cardiotoxicity. Integr Canc Ther. 2011, 15: 364-371.
6.
go back to reference Goswami SK, Das DK: Resveratrol and chemoprevention. Canc Lett. 2009, 284: 1-6. 10.1016/j.canlet.2009.01.041.CrossRef Goswami SK, Das DK: Resveratrol and chemoprevention. Canc Lett. 2009, 284: 1-6. 10.1016/j.canlet.2009.01.041.CrossRef
7.
go back to reference Cal C, Garban H, Jazirehi A, Yeh C, Mizutani Y, Bonavida B: Resveratrol and cancer: chemoprevention, apoptosis and chemoimmunosensitizing activities. Curr Med Chem Anticanc Agent. 2003, 3 (2): 77-93. 10.2174/1568011033353443.CrossRef Cal C, Garban H, Jazirehi A, Yeh C, Mizutani Y, Bonavida B: Resveratrol and cancer: chemoprevention, apoptosis and chemoimmunosensitizing activities. Curr Med Chem Anticanc Agent. 2003, 3 (2): 77-93. 10.2174/1568011033353443.CrossRef
8.
go back to reference Alkreathy HM, Damanhour ZA, Nessae A, Mark Ali SS, Osman AM: Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol. 2010, 48: 951-956. 10.1016/j.fct.2010.01.005.CrossRefPubMed Alkreathy HM, Damanhour ZA, Nessae A, Mark Ali SS, Osman AM: Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol. 2010, 48: 951-956. 10.1016/j.fct.2010.01.005.CrossRefPubMed
9.
go back to reference Osman AM, Bayoumi HM, Al-Harthy SA, Damanhouri ZA, AlShal M: Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Canc Cell Int. 2012, 12: 47-53. 10.1186/1475-2867-12-47.CrossRef Osman AM, Bayoumi HM, Al-Harthy SA, Damanhouri ZA, AlShal M: Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Canc Cell Int. 2012, 12: 47-53. 10.1186/1475-2867-12-47.CrossRef
10.
go back to reference Donenko FV, Efferth T, Mattern J, Moroz LV, Volm M: Resistance to doxorubicin in tumor cells in vitro and in vivo after pretreatment with verapamil. Chemotherapy. 1991, 37: 57-61. 10.1159/000238833.CrossRefPubMed Donenko FV, Efferth T, Mattern J, Moroz LV, Volm M: Resistance to doxorubicin in tumor cells in vitro and in vivo after pretreatment with verapamil. Chemotherapy. 1991, 37: 57-61. 10.1159/000238833.CrossRefPubMed
11.
go back to reference Kitagawa S, Nabekura T, Kamiyama S: Inhubition of P-glycoprotein function by tea catechins in KB-C2 cells. J Pharm Pharmacol. 2005, 56 (8): 1001-1005.CrossRef Kitagawa S, Nabekura T, Kamiyama S: Inhubition of P-glycoprotein function by tea catechins in KB-C2 cells. J Pharm Pharmacol. 2005, 56 (8): 1001-1005.CrossRef
12.
go back to reference Smets LA, Bout B, Broiwer M, Tulp A: Cytotoxic effect of dexamethasone restricted to noncycling early G1 phase cells of L1210 leukemia. J Cell Physiol. 1983, 116 (3): 397-403. 10.1002/jcp.1041160318.CrossRefPubMed Smets LA, Bout B, Broiwer M, Tulp A: Cytotoxic effect of dexamethasone restricted to noncycling early G1 phase cells of L1210 leukemia. J Cell Physiol. 1983, 116 (3): 397-403. 10.1002/jcp.1041160318.CrossRefPubMed
13.
go back to reference Kim HS, Kim TH: Resveratrol enhances the sensitivity of doxorubicin-mediated cell proliferation,invasion, and migration in human breast cancer cell lines. FASEB J. 2010, 964: 10- Kim HS, Kim TH: Resveratrol enhances the sensitivity of doxorubicin-mediated cell proliferation,invasion, and migration in human breast cancer cell lines. FASEB J. 2010, 964: 10-
14.
go back to reference Al-Abd AM, Mahmoud AM, El-Sherbiny GA, El-Moselhy MA, Nofal SM, El-Latif HA, El-Eraky WI, El-Shemy HA: Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumor cell lines in vitro. Cell Prolif. 2011, 44 (6): 591-601. 10.1111/j.1365-2184.2011.00783.x.CrossRefPubMed Al-Abd AM, Mahmoud AM, El-Sherbiny GA, El-Moselhy MA, Nofal SM, El-Latif HA, El-Eraky WI, El-Shemy HA: Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumor cell lines in vitro. Cell Prolif. 2011, 44 (6): 591-601. 10.1111/j.1365-2184.2011.00783.x.CrossRefPubMed
15.
go back to reference Al-Shabanh OA, Osman AM, Al-Harbi MM, Al-Bekairi AM, Al-Gharably NM, Aziz SA: Diltiazem potentiation of doxorubicin cytotoxicity and cellular up take in Ehrlich ascites carcinoma cells. Chemotherapy. 1995, 41 (5): 368-377. 10.1159/000239369.CrossRef Al-Shabanh OA, Osman AM, Al-Harbi MM, Al-Bekairi AM, Al-Gharably NM, Aziz SA: Diltiazem potentiation of doxorubicin cytotoxicity and cellular up take in Ehrlich ascites carcinoma cells. Chemotherapy. 1995, 41 (5): 368-377. 10.1159/000239369.CrossRef
16.
go back to reference Najjar H, Easson A: Age at diagnosis of breast cancert in arab nations. Int J Surg. 2010, 8 (6): 448-452. 10.1016/j.ijsu.2010.05.012.CrossRefPubMed Najjar H, Easson A: Age at diagnosis of breast cancert in arab nations. Int J Surg. 2010, 8 (6): 448-452. 10.1016/j.ijsu.2010.05.012.CrossRefPubMed
17.
go back to reference Ragione FD, Cucciolla V, Borriello A, Pietra VD, Racioppi L, Soldati G, Manna C, Galletti P, Zappia V: Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem Biophys Res Commun. 1998, 250 (1): 53-58. 10.1006/bbrc.1998.9263.CrossRefPubMed Ragione FD, Cucciolla V, Borriello A, Pietra VD, Racioppi L, Soldati G, Manna C, Galletti P, Zappia V: Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem Biophys Res Commun. 1998, 250 (1): 53-58. 10.1006/bbrc.1998.9263.CrossRefPubMed
18.
go back to reference Gusman J, Malooe H, Atassi G: A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis. 2001, 22 (8): 1111-1117. 10.1093/carcin/22.8.1111.CrossRefPubMed Gusman J, Malooe H, Atassi G: A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis. 2001, 22 (8): 1111-1117. 10.1093/carcin/22.8.1111.CrossRefPubMed
19.
go back to reference Joe AK, Liu H, Suzui M, Vural ME, Xiao D, Weinstein IB: Resveratrol induces growth inhibition, S- phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Canc Res. 2002, 8: 893-903. Joe AK, Liu H, Suzui M, Vural ME, Xiao D, Weinstein IB: Resveratrol induces growth inhibition, S- phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Canc Res. 2002, 8: 893-903.
20.
go back to reference Huang C, Ma WY, Goranson A, Dong Z: Resveratrol suppresses cell transformation and induces apoptosis through a P53-dependent pathway. Carcinogenesiss Lond. 1999, 20 (2): 237-242. 10.1093/carcin/20.2.237.CrossRef Huang C, Ma WY, Goranson A, Dong Z: Resveratrol suppresses cell transformation and induces apoptosis through a P53-dependent pathway. Carcinogenesiss Lond. 1999, 20 (2): 237-242. 10.1093/carcin/20.2.237.CrossRef
21.
go back to reference Pozo-Guisado E, Alvarez-Barrientos A, Mulero-Navarro S, Santiago-Josefat B, Fernandez-Salguero PM: The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem Pharmacol. 2002, 64 (9): 1375-1386. 10.1016/S0006-2952(02)01296-0.CrossRefPubMed Pozo-Guisado E, Alvarez-Barrientos A, Mulero-Navarro S, Santiago-Josefat B, Fernandez-Salguero PM: The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem Pharmacol. 2002, 64 (9): 1375-1386. 10.1016/S0006-2952(02)01296-0.CrossRefPubMed
22.
go back to reference Chen Y, Tseng SH, Lai HS, Chen WJ: Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery. 2004, 136 (1): 57-66. 10.1016/j.surg.2004.01.017.CrossRefPubMed Chen Y, Tseng SH, Lai HS, Chen WJ: Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery. 2004, 136 (1): 57-66. 10.1016/j.surg.2004.01.017.CrossRefPubMed
23.
go back to reference Hao J, Lijie Z, Jarret K, Kelly K, Gautam SC, Laurent G, Rodriguez AI, David K, Tangella Jackson H, Corcoran GB, Seidman MD, Levine RA: induced apoptotic death in human U251 glioma cells. Mol Canc Ther Resveratrol. 2004, 4: 554-557. Hao J, Lijie Z, Jarret K, Kelly K, Gautam SC, Laurent G, Rodriguez AI, David K, Tangella Jackson H, Corcoran GB, Seidman MD, Levine RA: induced apoptotic death in human U251 glioma cells. Mol Canc Ther Resveratrol. 2004, 4: 554-557.
24.
go back to reference Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y: Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticanc Res. 2004, 24 (5A): 2783-2840. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y: Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticanc Res. 2004, 24 (5A): 2783-2840.
25.
go back to reference Li H, Xia N, Forstermann U: Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide. 2012, 26 (2): 102-110. 10.1016/j.niox.2011.12.006.CrossRefPubMed Li H, Xia N, Forstermann U: Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide. 2012, 26 (2): 102-110. 10.1016/j.niox.2011.12.006.CrossRefPubMed
26.
go back to reference Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS: Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway.Free radic. Biol Med. 2009, 46 (12): 1589-1597. Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS: Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway.Free radic. Biol Med. 2009, 46 (12): 1589-1597.
27.
go back to reference Tatlidede E, Sehirli O, Velioğlu-Oğünc A, Cetinel S, Yeğen BC, Yarat A, Süleymanoğlu S, Sener G: Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic Res. 2009, 43: 195-205. 10.1080/10715760802673008.CrossRefPubMed Tatlidede E, Sehirli O, Velioğlu-Oğünc A, Cetinel S, Yeğen BC, Yarat A, Süleymanoğlu S, Sener G: Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic Res. 2009, 43: 195-205. 10.1080/10715760802673008.CrossRefPubMed
28.
go back to reference Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB: Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. 2008, 26: 3777-3784. 10.1200/JCO.2007.14.9401.PubMedCentralCrossRefPubMed Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB: Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. 2008, 26: 3777-3784. 10.1200/JCO.2007.14.9401.PubMedCentralCrossRefPubMed
Metadata
Title
Chemosensetizing and cardioprotective effects of resveratrol in doxorubicin- treated animals
Authors
Abdel-Moneim M Osman
Sameer E Al-Harthi
Ohoud M AlArabi
Mohamed F Elshal
Wafaa S Ramadan
Mohamed N Alaama
Huda M Al-Kreathy
Zoheir A Damanhouri
Osman H Osman
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2013
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-13-52

Other articles of this Issue 1/2013

Cancer Cell International 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine