Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 1/2006

01-07-2006 | Original Article

Chemoprotection effect of retroviral vector encoding multidrug resistance 1 gene to allow intensified chemotherapy in vivo

Authors: Chun-Bao Guo, Ying-Cun Li, Xian-Qing Jin

Published in: Cancer Chemotherapy and Pharmacology | Issue 1/2006

Login to get access

Abstract

Increasing the expression of human multidrug resistance (MDR) 1 gene in bone marrow cells to prevent or circumvent bone morrow toxicity from chemotherapy agent is a high priority of dose intensification protocols. In this study, we have used a tumor-bearing model to investigate the chemoprotection effect of MDR1 gene by transfecting retroviral vectors containing and expressing the MDR gene in vivo. Hematopoietic progenitor cells were served as target of MDR1 gene transferred by the mediation of retrovirus vector and engrafted into the BALB/c mice with 60Co-γ ray exposure in advance. Doxorubicin (5, 10, and 20 mg/kg) suppressed tumor growth of the xenograft significantly in a dose-dependence mode if supported by suitable peripheral WBC. WBC count revealed that the mice that had received gene-transduced cells showed a significant increase in WBC count compared with their gene-transduced naive counterparts. The function and expression of MDR1 gene were detected by flow cytometry, RT-PCR, and immunohistochemistry (IC) method. MDRl mRNA expression could be detected in BM. Spleens contained measurable amounts of MDRl mRNA. Tail vein blood and tumor tissue detected MDRl DNA but no MDRl mRNA expression. FACS analysis of infected BM cells obtained 6 weeks later showed high levels of P-gp function. Based on these results we conclude that cytostatic drug resistance gene therapy may provide some degree of chemoprotection and so can increase the chemotherapy dose to kill tumor cells.
Literature
1.
go back to reference Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A, Nienhuis AW (1992) Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257: 99–103PubMedCrossRef Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A, Nienhuis AW (1992) Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257: 99–103PubMedCrossRef
2.
go back to reference Boesen JJ, Nooter K, Valerio D (1993) Circumvention of chemotherapy-induced myelosuppression by transfer of the mdr1 gene. Biotherapy 6: 291–302PubMedCrossRef Boesen JJ, Nooter K, Valerio D (1993) Circumvention of chemotherapy-induced myelosuppression by transfer of the mdr1 gene. Biotherapy 6: 291–302PubMedCrossRef
3.
go back to reference Sorrentino BP, McDonagh KT, Woods D, Orlic D (1995) Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood 86: 491–501PubMed Sorrentino BP, McDonagh KT, Woods D, Orlic D (1995) Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood 86: 491–501PubMed
4.
go back to reference Schwarzenberger P, Spence S, Lohrey N, Kmiecik T, Longo DL, Murphy WJ, Ruscetti FW, Keller JR (1996) Gene transfer of multidrug resistance into a factor-dependent human hematopoietic progenitor cell line: in vivo model for genetically transferred chemoprotection. Blood 87: 2723–2731PubMed Schwarzenberger P, Spence S, Lohrey N, Kmiecik T, Longo DL, Murphy WJ, Ruscetti FW, Keller JR (1996) Gene transfer of multidrug resistance into a factor-dependent human hematopoietic progenitor cell line: in vivo model for genetically transferred chemoprotection. Blood 87: 2723–2731PubMed
5.
go back to reference Hanania EG, Deisseroth AB (1994) Serial transplantation shows that early hematopoietic precursor cells are transduced by MDR-1 retroviral vector in a mouse gene therapy model. Cancer Gene Ther 1: 21–25PubMed Hanania EG, Deisseroth AB (1994) Serial transplantation shows that early hematopoietic precursor cells are transduced by MDR-1 retroviral vector in a mouse gene therapy model. Cancer Gene Ther 1: 21–25PubMed
6.
go back to reference Ujhelly O, Ozvegy C, Varady G, Cervenak J, Homolya L, Grez M, Scheffer G, Roos D, Bates SE, Varadi A, Sarkadi B, Nemet K (2003) Application of a human multidrug transporter (ABCG2) variant as selectable marker in gene transfer to progenitor cells. Hum Gene Ther 14: 403–412PubMedCrossRef Ujhelly O, Ozvegy C, Varady G, Cervenak J, Homolya L, Grez M, Scheffer G, Roos D, Bates SE, Varadi A, Sarkadi B, Nemet K (2003) Application of a human multidrug transporter (ABCG2) variant as selectable marker in gene transfer to progenitor cells. Hum Gene Ther 14: 403–412PubMedCrossRef
7.
go back to reference Klein C, Baum C (2004) Gene therapy for inherited disorders of haematopoietic cells. Hematol J 5: 103–111PubMedCrossRef Klein C, Baum C (2004) Gene therapy for inherited disorders of haematopoietic cells. Hematol J 5: 103–111PubMedCrossRef
8.
go back to reference May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M (2000) Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406: 82–86PubMedCrossRef May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M (2000) Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406: 82–86PubMedCrossRef
9.
go back to reference Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P (2001) Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294: 2368–2371PubMedCrossRef Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P (2001) Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294: 2368–2371PubMedCrossRef
10.
go back to reference Levasseur DN, Ryan TM, Pawlik KM, Townes TM (2003) Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood 102: 4312–4319PubMedCrossRef Levasseur DN, Ryan TM, Pawlik KM, Townes TM (2003) Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood 102: 4312–4319PubMedCrossRef
11.
go back to reference Persons DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW (2003) The degree of phenotypic correction of murine beta-thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood 101: 2175–2183PubMedCrossRef Persons DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW (2003) The degree of phenotypic correction of murine beta-thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood 101: 2175–2183PubMedCrossRef
12.
go back to reference Imren S, Payen E, Westerman KA, Pawliuk R, Fabry ME, Eaves CJ, Cavilla B, Wadsworth LD, Beuzard Y, Bouhassira EE, Russell R, London IM, Nagel RL, Leboulch P, Humphries RK (2002) Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci U S A 99: 14380–14385PubMedCrossRef Imren S, Payen E, Westerman KA, Pawliuk R, Fabry ME, Eaves CJ, Cavilla B, Wadsworth LD, Beuzard Y, Bouhassira EE, Russell R, London IM, Nagel RL, Leboulch P, Humphries RK (2002) Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci U S A 99: 14380–14385PubMedCrossRef
13.
go back to reference Cassel A, Cottler-Fox M, Doren S, Dunbar CE (1993) Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp Hematol 21: 585–591PubMed Cassel A, Cottler-Fox M, Doren S, Dunbar CE (1993) Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp Hematol 21: 585–591PubMed
14.
go back to reference Hanawa H, Hematti P, Keyvanfar K, Metzger ME, Krouse A, Donahue RE, Kepes S, Gray J, Dunbar CE, Persons DA, Nienhuis AW (2004) Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 103: 4062–4069PubMedCrossRef Hanawa H, Hematti P, Keyvanfar K, Metzger ME, Krouse A, Donahue RE, Kepes S, Gray J, Dunbar CE, Persons DA, Nienhuis AW (2004) Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 103: 4062–4069PubMedCrossRef
15.
go back to reference Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7: 33–40PubMedCrossRef Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7: 33–40PubMedCrossRef
16.
go back to reference Podda S, Ward M, Himelstein A, Richardson C, de la Flor-Weiss E, Smith L, Gottesman M, Pastan I, Bank A (1992) Transfer and expression of the human multiple drug resistance gene into live mice. Proc Natl Acad Sci U S A 89: 9676–9680PubMedCrossRef Podda S, Ward M, Himelstein A, Richardson C, de la Flor-Weiss E, Smith L, Gottesman M, Pastan I, Bank A (1992) Transfer and expression of the human multiple drug resistance gene into live mice. Proc Natl Acad Sci U S A 89: 9676–9680PubMedCrossRef
17.
go back to reference Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346: 1185–1193PubMedCrossRef Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346: 1185–1193PubMedCrossRef
18.
go back to reference Allsopp RC, Weissman IL (2002) Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role? Oncogene 21: 3270–3273PubMedCrossRef Allsopp RC, Weissman IL (2002) Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role? Oncogene 21: 3270–3273PubMedCrossRef
19.
go back to reference Ward M, Richardson C, Pioli P, Smith L, Podda S, Goff S, Hesdorffer C, Bank A (1994) Transfer and expression of the human multiple drug resistance gene in human CD34+ cells. Blood 84: 1408–1414PubMed Ward M, Richardson C, Pioli P, Smith L, Podda S, Goff S, Hesdorffer C, Bank A (1994) Transfer and expression of the human multiple drug resistance gene in human CD34+ cells. Blood 84: 1408–1414PubMed
20.
go back to reference Sawaoka H, Kawano S, Tsuji S, Tsujii M, Gunawan ES, Takei Y, Nagano K, Hori M (1998) Cyclooxygenase-2 inhibitors suppress the growth of gastric cancer xenografts via induction of apoptosis in nude mice. Am J Physiol 274: G1061–1067PubMed Sawaoka H, Kawano S, Tsuji S, Tsujii M, Gunawan ES, Takei Y, Nagano K, Hori M (1998) Cyclooxygenase-2 inhibitors suppress the growth of gastric cancer xenografts via induction of apoptosis in nude mice. Am J Physiol 274: G1061–1067PubMed
21.
go back to reference Hanania EG, Deisseroth AB (1994) Serial transplantation shows that early hematopoietic precursor cells are transduced by MDR-1 retroviral vector in a mouse gene therapy model. Cancer Gene Ther 1: 21–25PubMed Hanania EG, Deisseroth AB (1994) Serial transplantation shows that early hematopoietic precursor cells are transduced by MDR-1 retroviral vector in a mouse gene therapy model. Cancer Gene Ther 1: 21–25PubMed
22.
go back to reference Bunting KD, Zhou S, Lu T, Sorrentino BP (2000) Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 96: 902–909PubMed Bunting KD, Zhou S, Lu T, Sorrentino BP (2000) Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 96: 902–909PubMed
23.
go back to reference Laufs S, Baum C, Fruehauf S (2002) Transplantation of human hematopoietic progenitor cells transduced with a retroviral vector containing the human multidrug-resistance-1 gene for myeloprotective gene therapy. Transplant Proc 34: 2325–2329PubMedCrossRef Laufs S, Baum C, Fruehauf S (2002) Transplantation of human hematopoietic progenitor cells transduced with a retroviral vector containing the human multidrug-resistance-1 gene for myeloprotective gene therapy. Transplant Proc 34: 2325–2329PubMedCrossRef
24.
go back to reference Demetri GD, Griffin JD (1990) Hematopoietic growth factors and high-dose chemotherapy: will grams succeed where milligrams fail? J Clin Oncol 8: 761–764PubMed Demetri GD, Griffin JD (1990) Hematopoietic growth factors and high-dose chemotherapy: will grams succeed where milligrams fail? J Clin Oncol 8: 761–764PubMed
25.
go back to reference Jillella AP, Ustun C (2004) What Is the Optimum Number of CD34(+) Peripheral Blood Stem Cells for an Autologous Transplant? Stem Cells Dev 13: 598–606PubMedCrossRef Jillella AP, Ustun C (2004) What Is the Optimum Number of CD34(+) Peripheral Blood Stem Cells for an Autologous Transplant? Stem Cells Dev 13: 598–606PubMedCrossRef
26.
go back to reference Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P, Proya E, Anagnostopoulos A, Fassas A (2005) G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 33: 108–119PubMedCrossRef Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P, Proya E, Anagnostopoulos A, Fassas A (2005) G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 33: 108–119PubMedCrossRef
27.
go back to reference Bernardi R, Grisendi S, Pandolfi PP (2002) Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 21: 3445–3458PubMedCrossRef Bernardi R, Grisendi S, Pandolfi PP (2002) Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 21: 3445–3458PubMedCrossRef
28.
go back to reference Carpinteiro A, Peinert S, Ostertag W, Zander AR, Hossfeld DK, Kuhlcke K, Eckert HG, Baum C, Hegewisch-Becker S (2002) Genetic protection of repopulating hematopoietic cells with an improved MDR1-retrovirus allows administration of intensified chemotherapy following stem cell transplantation in mice. Int J Cancer 98: 785–792PubMedCrossRef Carpinteiro A, Peinert S, Ostertag W, Zander AR, Hossfeld DK, Kuhlcke K, Eckert HG, Baum C, Hegewisch-Becker S (2002) Genetic protection of repopulating hematopoietic cells with an improved MDR1-retrovirus allows administration of intensified chemotherapy following stem cell transplantation in mice. Int J Cancer 98: 785–792PubMedCrossRef
29.
go back to reference Cowan KH, Moscow JA, Huang H, Zujewski JA, O’Shaughnessy J, Sorrentino B, Hines K, Carter C, Schneider E, Cusack G, Noone M, Dunbar C, Steinberg S, Wilson W, Goldspiel B, Read EJ, Leitman SF, McDonagh K, Chow C, Abati A, Chiang Y, Chang YN, Gottesman MM, Pastan I, Nienhuis A (1999) Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res 5: 1619–1628PubMed Cowan KH, Moscow JA, Huang H, Zujewski JA, O’Shaughnessy J, Sorrentino B, Hines K, Carter C, Schneider E, Cusack G, Noone M, Dunbar C, Steinberg S, Wilson W, Goldspiel B, Read EJ, Leitman SF, McDonagh K, Chow C, Abati A, Chiang Y, Chang YN, Gottesman MM, Pastan I, Nienhuis A (1999) Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res 5: 1619–1628PubMed
30.
go back to reference Mickisch GH, Licht T, Merlino GT, Gottesman MM, Pastan I (1991) Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res 51: 5417–5424PubMed Mickisch GH, Licht T, Merlino GT, Gottesman MM, Pastan I (1991) Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res 51: 5417–5424PubMed
31.
go back to reference Luskey BD, Rosenblatt M, Zsebo K, Williams DA (1992) Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopoietic stem cells. Blood 80: 396–402PubMed Luskey BD, Rosenblatt M, Zsebo K, Williams DA (1992) Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopoietic stem cells. Blood 80: 396–402PubMed
32.
go back to reference Bodine DM, Karlsson S, Nienhuis AW (1989) Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc Natl Acad Sci U S A 86: 8897–8901PubMedCrossRef Bodine DM, Karlsson S, Nienhuis AW (1989) Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc Natl Acad Sci U S A 86: 8897–8901PubMedCrossRef
33.
go back to reference Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP (1998) Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 92: 2269–2279PubMed Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP (1998) Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 92: 2269–2279PubMed
34.
go back to reference Licht T, Gottesman MM, Pastan I (1995) Transfer of the MDR1 (multidrug resistance) gene: protection of hematopoietic cells from cytotoxic chemotherapy, and selection of transduced cells in vivo. Cytokines Mol Ther 1: 11–20PubMed Licht T, Gottesman MM, Pastan I (1995) Transfer of the MDR1 (multidrug resistance) gene: protection of hematopoietic cells from cytotoxic chemotherapy, and selection of transduced cells in vivo. Cytokines Mol Ther 1: 11–20PubMed
35.
go back to reference McLachlin JR, Eglitis MA, Ueda K, Kantoff PW, Pastan IH, Anderson WF, Gottesman MM (1990) Expression of a human complementary DNA for the multidrug resistance gene in murine hematopoietic precursor cells with the use of retroviral gene transfer. J Natl Cancer Inst 82: 1260–1263PubMedCrossRef McLachlin JR, Eglitis MA, Ueda K, Kantoff PW, Pastan IH, Anderson WF, Gottesman MM (1990) Expression of a human complementary DNA for the multidrug resistance gene in murine hematopoietic precursor cells with the use of retroviral gene transfer. J Natl Cancer Inst 82: 1260–1263PubMedCrossRef
36.
go back to reference Mickisch GH, Merlino GT, Galski H, Gottesman MM, Pastan I (1991) Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proc Natl Acad Sci U S A 88: 547–551PubMedCrossRef Mickisch GH, Merlino GT, Galski H, Gottesman MM, Pastan I (1991) Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proc Natl Acad Sci U S A 88: 547–551PubMedCrossRef
37.
go back to reference Hesdorffer C, Ayello J, Ward M, Kaubisch A, Vahdat L, Balmaceda C, Garrett T, Fetell M, Reiss R, Bank A, Antman K (1998) Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 16: 165–172PubMed Hesdorffer C, Ayello J, Ward M, Kaubisch A, Vahdat L, Balmaceda C, Garrett T, Fetell M, Reiss R, Bank A, Antman K (1998) Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 16: 165–172PubMed
38.
go back to reference Ragg S, Xu-Welliver M, Bailey J, D’Souza M, Cooper R, Chandra S, Seshadri R, Pegg AE, Williams DA (2000) Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res 60: 5187–5195PubMed Ragg S, Xu-Welliver M, Bailey J, D’Souza M, Cooper R, Chandra S, Seshadri R, Pegg AE, Williams DA (2000) Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res 60: 5187–5195PubMed
39.
go back to reference Hanania EG, Giles RE, Kavanagh J, Fu SQ, Ellerson D, Zu Z, Wang T, Su Y, Kudelka A, Rahman Z, Holmes F, Hortobagyi G, Claxton D, Bachier C, Thall P, Cheng S, Hester J, Ostrove JM, Bird RE, Chang A, Korbling M, Seong D, Cote R, Holzmayer T, Deisseroth AB (1996) Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc Natl Acad Sci U S A 93: 15346–15351PubMedCrossRef Hanania EG, Giles RE, Kavanagh J, Fu SQ, Ellerson D, Zu Z, Wang T, Su Y, Kudelka A, Rahman Z, Holmes F, Hortobagyi G, Claxton D, Bachier C, Thall P, Cheng S, Hester J, Ostrove JM, Bird RE, Chang A, Korbling M, Seong D, Cote R, Holzmayer T, Deisseroth AB (1996) Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc Natl Acad Sci U S A 93: 15346–15351PubMedCrossRef
Metadata
Title
Chemoprotection effect of retroviral vector encoding multidrug resistance 1 gene to allow intensified chemotherapy in vivo
Authors
Chun-Bao Guo
Ying-Cun Li
Xian-Qing Jin
Publication date
01-07-2006
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 1/2006
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-005-0144-y

Other articles of this Issue 1/2006

Cancer Chemotherapy and Pharmacology 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine