Skip to main content
Top
Published in: Calcified Tissue International 3/2009

01-03-2009

Chemical/Molecular Structure of the Dentin–Enamel Junction is Dependent on the Intratooth Location

Authors: Changqi Xu, Xiaomei Yao, Mary P. Walker, Yong Wang

Published in: Calcified Tissue International | Issue 3/2009

Login to get access

Abstract

The dentin–enamel junction (DEJ) plays an important role in preventing crack propagation from enamel into dentin. This function stems from its complex structure and materials properties that are different from either dentin or enamel. The molecular structural differences in both mineral and organic matrix across the DEJ zone were investigated by two-dimensional confocal Raman microspectroscopic mapping/imaging technique. The intensity ratios of 1450 (CH, matrix)/960 (P-O, mineral) decreased gradually to nearly zero across the DEJ. The width of this transition zone was dependent on the intratooth location, with 12.9 ± 3.2 μm width at occlusal positions and 6.2 ± 1.3 μm at cervical positions. The difference in width was significant (P < 0.001). Concurrently, spectral differences in both organic and inorganic matrices across the DEJ were also noted. For example, the ratios of 1243 (amide III)/1450 (CH) within the DEJ were lower than the values in dentin; however, the ratios of 1665 (amide I)/1450 (CH) within the DEJ were higher than those values in dentin. In addition, the ratios of 1070 (carbonate)/960 (phosphate) within the dentin were lower than the values in the DEJ. Raman images indicated that the distribution of the above ratios across the DEJ zone were also different at occlusal and cervical positions. The results suggest that the intratooth-location-dependent structure of the DEJ may be related to its function. Micro-Raman spectroscopic/imaging analysis of the DEJ provides a powerful means of identifying the functional width and molecular structural differences across the DEJ.
Literature
1.
go back to reference Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, Rekow ED (1998) Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 77:472–480PubMedCrossRef Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, Rekow ED (1998) Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 77:472–480PubMedCrossRef
2.
go back to reference Walker MP, Fricke BA (2006) Dentin–enamel junction of human teeth. In: Akay M (ed) Wiley encyclopedia of biomedical engineering. Wiley, Hoboken, pp 1061–1064 Walker MP, Fricke BA (2006) Dentin–enamel junction of human teeth. In: Akay M (ed) Wiley encyclopedia of biomedical engineering. Wiley, Hoboken, pp 1061–1064
3.
go back to reference Lin CP, Douglas WH, Erlandsen SL (1993) Scanning electron microscopy of type I collagen at the dentin–enamel junction of human teeth. J Histochem Cytochem 41:381–388PubMed Lin CP, Douglas WH, Erlandsen SL (1993) Scanning electron microscopy of type I collagen at the dentin–enamel junction of human teeth. J Histochem Cytochem 41:381–388PubMed
4.
go back to reference Lin CP, Douglas WH (1994) Structure–property relations and crack resistance at the bovine dentin–enamel junction. J Dent Res 73:1072–1078PubMed Lin CP, Douglas WH (1994) Structure–property relations and crack resistance at the bovine dentin–enamel junction. J Dent Res 73:1072–1078PubMed
5.
go back to reference Dong XD, Ruse ND (2003) Fatigue crack propagation path across the dentinoenamel junction complex in human teeth. J Biomed Mater Res A 66A:103–109CrossRef Dong XD, Ruse ND (2003) Fatigue crack propagation path across the dentinoenamel junction complex in human teeth. J Biomed Mater Res A 66A:103–109CrossRef
6.
go back to reference Marshall GW Jr, Balooch M, Gallagher RR, Gansky SA, Marshall SJ (2001) Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J Biomed Mater Res 54:87–95PubMedCrossRef Marshall GW Jr, Balooch M, Gallagher RR, Gansky SA, Marshall SJ (2001) Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J Biomed Mater Res 54:87–95PubMedCrossRef
7.
go back to reference Fong H, Sarikaya M, White SN, Snead ML (2000) Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Mater Sci Eng C Biomimet Supramolec Syst 7:119–128 Fong H, Sarikaya M, White SN, Snead ML (2000) Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Mater Sci Eng C Biomimet Supramolec Syst 7:119–128
8.
go back to reference Urabe I, Nakajima S, Sano H, Tagami J (2000) Physical properties of the dentin–enamel junction region. Am J Dent 13:129–135PubMed Urabe I, Nakajima S, Sano H, Tagami J (2000) Physical properties of the dentin–enamel junction region. Am J Dent 13:129–135PubMed
9.
go back to reference Maev RG, Denisova LA, Maeva EY, Denissov AA (2002) New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy. Ultrasound Med Biol 28:131–136PubMedCrossRef Maev RG, Denisova LA, Maeva EY, Denissov AA (2002) New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy. Ultrasound Med Biol 28:131–136PubMedCrossRef
10.
go back to reference WentrupByrne E, Armstrong CA, Armstrong RS, Collins BM (1997) Fourier transform Raman microscopic mapping of the molecular components in a human tooth. J Raman Spectrosc 28:151–158CrossRef WentrupByrne E, Armstrong CA, Armstrong RS, Collins BM (1997) Fourier transform Raman microscopic mapping of the molecular components in a human tooth. J Raman Spectrosc 28:151–158CrossRef
11.
go back to reference Shimizu D, Macho GA (2007) Functional significance of the microstructural detail of the primate dentino–enamel junction: a possible example of exaptation. J Hum Evol 52:103–111PubMedCrossRef Shimizu D, Macho GA (2007) Functional significance of the microstructural detail of the primate dentino–enamel junction: a possible example of exaptation. J Hum Evol 52:103–111PubMedCrossRef
12.
go back to reference White SN, Paine ML, Luo W, Sarikaya M, Fong H, Yu ZK, Li ZC, Snead ML (2000) The dentino–enamel junction is a broad transitional zone uniting dissimilar bioceramic composites. J Am Ceram Soc 83:238–240CrossRef White SN, Paine ML, Luo W, Sarikaya M, Fong H, Yu ZK, Li ZC, Snead ML (2000) The dentino–enamel junction is a broad transitional zone uniting dissimilar bioceramic composites. J Am Ceram Soc 83:238–240CrossRef
13.
go back to reference Gallagher RR, Demos SG, Balooch M, Marshall GW Jr, Marshall SJ (2003) Optical spectroscopy and imaging of the dentin–enamel junction in human third molars. J Biomed Mater Res A 64:372–377PubMedCrossRef Gallagher RR, Demos SG, Balooch M, Marshall GW Jr, Marshall SJ (2003) Optical spectroscopy and imaging of the dentin–enamel junction in human third molars. J Biomed Mater Res A 64:372–377PubMedCrossRef
14.
go back to reference Baena JR, Lendl B (2004) Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol 8:534–539PubMedCrossRef Baena JR, Lendl B (2004) Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol 8:534–539PubMedCrossRef
15.
go back to reference Darvin ME, Gersonde I, Ey S, Brandt NN, Albrecht H, Gonchukov SA, Sterry W, Lademann J (2004) Noninvasive detection of beta-carotene and lycopene in human skin using Raman spectroscopy. Laser Phys 14:231–233 Darvin ME, Gersonde I, Ey S, Brandt NN, Albrecht H, Gonchukov SA, Sterry W, Lademann J (2004) Noninvasive detection of beta-carotene and lycopene in human skin using Raman spectroscopy. Laser Phys 14:231–233
16.
go back to reference Katz A, Kruger EF, Minko G, Liu CH, Rosen RB, Alfano RR (2003) Detection of glutamate in the eye by Raman spectroscopy. J Biomed Opt 8:167–172PubMedCrossRef Katz A, Kruger EF, Minko G, Liu CH, Rosen RB, Alfano RR (2003) Detection of glutamate in the eye by Raman spectroscopy. J Biomed Opt 8:167–172PubMedCrossRef
17.
18.
go back to reference Sayari A, Hamoudi S (2001) Periodic mesoporous silica-based organic–inorganic nanocomposite materials. Chem Mater 13:3151–3168CrossRef Sayari A, Hamoudi S (2001) Periodic mesoporous silica-based organic–inorganic nanocomposite materials. Chem Mater 13:3151–3168CrossRef
19.
go back to reference Schut TCB, Wolthuis R, Caspers PJ, Puppels GJ (2002) Real-time tissue characterization on the basis of in vivo Raman spectra. J Raman Spectrosc 33:580–585CrossRef Schut TCB, Wolthuis R, Caspers PJ, Puppels GJ (2002) Real-time tissue characterization on the basis of in vivo Raman spectra. J Raman Spectrosc 33:580–585CrossRef
20.
go back to reference Shim MG, Wilson BC, Marple E, Wach M (1999) Study of fiber-optic probes for in vivo medical Raman spectroscopy. Appl Spectrosc 53:619–627CrossRef Shim MG, Wilson BC, Marple E, Wach M (1999) Study of fiber-optic probes for in vivo medical Raman spectroscopy. Appl Spectrosc 53:619–627CrossRef
21.
go back to reference Tsuda H, Arends J (1997) Raman spectroscopy in dental research: a short review of recent studies. Adv Dent Res 11:539–547PubMedCrossRef Tsuda H, Arends J (1997) Raman spectroscopy in dental research: a short review of recent studies. Adv Dent Res 11:539–547PubMedCrossRef
22.
go back to reference Stone N, Kendall C, Smith J, Crow P, Barr H (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157PubMedCrossRef Stone N, Kendall C, Smith J, Crow P, Barr H (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157PubMedCrossRef
23.
go back to reference Fraenkel L (1835) De penitiori dentium humanorum structura observationis. In: Diss Vratislaviae. Pressburg, Hungary Fraenkel L (1835) De penitiori dentium humanorum structura observationis. In: Diss Vratislaviae. Pressburg, Hungary
24.
go back to reference Balooch G, Marshall GW, Marshall SJ, Warren OL, Asif SA, Balooch M (2004) Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech 37:1223–1232PubMedCrossRef Balooch G, Marshall GW, Marshall SJ, Warren OL, Asif SA, Balooch M (2004) Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech 37:1223–1232PubMedCrossRef
25.
go back to reference Goldberg M, Septier D, Bourd K, Hall R, Jeanny JC, Jonet L, Colin S, Tager F, Chaussain-Miller C, Garabedian M, George A, Goldberg H, Menashi S (2002) The dentino–enamel junction revisited. Connect Tissue Res 43:482–489PubMedCrossRef Goldberg M, Septier D, Bourd K, Hall R, Jeanny JC, Jonet L, Colin S, Tager F, Chaussain-Miller C, Garabedian M, George A, Goldberg H, Menashi S (2002) The dentino–enamel junction revisited. Connect Tissue Res 43:482–489PubMedCrossRef
26.
27.
go back to reference Smith TM, Toussain M, Reid DJ, Olejniczak AJ, Hublin JJ (2007) Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proc Natl Acad Sci USA 104:20220–20225PubMedCrossRef Smith TM, Toussain M, Reid DJ, Olejniczak AJ, Hublin JJ (2007) Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proc Natl Acad Sci USA 104:20220–20225PubMedCrossRef
28.
go back to reference Frushour BG, Koenig JL (1975) Raman scattering of collagen, gelatin, and elastin. Biopolymers 14:379–391PubMedCrossRef Frushour BG, Koenig JL (1975) Raman scattering of collagen, gelatin, and elastin. Biopolymers 14:379–391PubMedCrossRef
29.
go back to reference Wang Y, Spencer P (2002) Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy. J Biomed Mater Res 60:300–308PubMedCrossRef Wang Y, Spencer P (2002) Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy. J Biomed Mater Res 60:300–308PubMedCrossRef
30.
go back to reference Renugopalakrishnan V, Carreira LA, Collette TW, Dobbs JC, Chandraksasan G, Lord RC (1998) Non-uniform triple helical structure in chick skin type I collagen on thermal denaturation: Raman spectroscopic study. Z Naturforsch [C] 53:383–388 Renugopalakrishnan V, Carreira LA, Collette TW, Dobbs JC, Chandraksasan G, Lord RC (1998) Non-uniform triple helical structure in chick skin type I collagen on thermal denaturation: Raman spectroscopic study. Z Naturforsch [C] 53:383–388
31.
go back to reference Kazanci M, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2006) Bone osteonal tissues by Raman spectral mapping: orientation–composition. J Struct Biol 156:489–496PubMedCrossRef Kazanci M, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2006) Bone osteonal tissues by Raman spectral mapping: orientation–composition. J Struct Biol 156:489–496PubMedCrossRef
32.
go back to reference Kubisz L, Polomska M (2007) FT NIR Raman studies on gamma-irradiated bone. Spectrochim Acta A Mol Biomol Spectrosc 66:616–625PubMedCrossRef Kubisz L, Polomska M (2007) FT NIR Raman studies on gamma-irradiated bone. Spectrochim Acta A Mol Biomol Spectrosc 66:616–625PubMedCrossRef
33.
go back to reference Jastrzebska M, Wrzalik R, Kocot A, Zalewska-Rejdak J, Cwalina B (2003) Raman spectroscopic study of glutaraldehyde-stabilized collagen and pericardium tissue. J Biomater Sci Polym Ed 14:185–197PubMedCrossRef Jastrzebska M, Wrzalik R, Kocot A, Zalewska-Rejdak J, Cwalina B (2003) Raman spectroscopic study of glutaraldehyde-stabilized collagen and pericardium tissue. J Biomater Sci Polym Ed 14:185–197PubMedCrossRef
34.
go back to reference Begue-Kirn C, Krebsbach PH, Bartlett JD, Butler WT (1998) Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci 106:963–970PubMedCrossRef Begue-Kirn C, Krebsbach PH, Bartlett JD, Butler WT (1998) Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci 106:963–970PubMedCrossRef
35.
go back to reference Nagano T, Oida S, Ando H, Gomi K, Arai T, Fukae M (2003) Relative levels of mRNA encoding enamel proteins in enamel organ epithelia and odontoblasts. J Dent Res 82:982–986PubMedCrossRef Nagano T, Oida S, Ando H, Gomi K, Arai T, Fukae M (2003) Relative levels of mRNA encoding enamel proteins in enamel organ epithelia and odontoblasts. J Dent Res 82:982–986PubMedCrossRef
36.
go back to reference Nanci A, Zalzal S, Lavoie P, Kunikata M, Chen W, Krebsbach PH, Yamada Y, Hammarstrom L, Simmer JP, Fincham AG, Snead ML, Smith CE (1998) Comparative immunochemical analyses of the developmental expression and distribution of ameloblastin and amelogenin in rat incisors. J Histochem Cytochem 46:911–934PubMed Nanci A, Zalzal S, Lavoie P, Kunikata M, Chen W, Krebsbach PH, Yamada Y, Hammarstrom L, Simmer JP, Fincham AG, Snead ML, Smith CE (1998) Comparative immunochemical analyses of the developmental expression and distribution of ameloblastin and amelogenin in rat incisors. J Histochem Cytochem 46:911–934PubMed
37.
go back to reference Chiang YC, Lee BS, Wang YL, Cheng YA, Chen YL, Shiau JS, Wang DM, Lin CP (2008) Microstructural changes of enamel, dentin–enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser. Lasers Med Sci 23:41–48PubMedCrossRef Chiang YC, Lee BS, Wang YL, Cheng YA, Chen YL, Shiau JS, Wang DM, Lin CP (2008) Microstructural changes of enamel, dentin–enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser. Lasers Med Sci 23:41–48PubMedCrossRef
38.
go back to reference Moreno EC, Aoba T (1991) Comparative solubility study of human dental enamel, dentin, and hydroxyapatite. Calcif Tissue Int 49:6–13PubMedCrossRef Moreno EC, Aoba T (1991) Comparative solubility study of human dental enamel, dentin, and hydroxyapatite. Calcif Tissue Int 49:6–13PubMedCrossRef
39.
go back to reference Tramini P, Pelissier B, Valcarcel J, Bonnet B, Maury L (2000) A Raman spectroscopic investigation of dentin and enamel structures modified by lactic acid. Caries Res 34:233–240PubMedCrossRef Tramini P, Pelissier B, Valcarcel J, Bonnet B, Maury L (2000) A Raman spectroscopic investigation of dentin and enamel structures modified by lactic acid. Caries Res 34:233–240PubMedCrossRef
40.
go back to reference Robinson C, Shore RC, Brookes SJ, Strafford S, Wood SR, Kirkham J (2000) The chemistry of enamel caries. Crit Rev Oral Biol Med 11:481–495PubMedCrossRef Robinson C, Shore RC, Brookes SJ, Strafford S, Wood SR, Kirkham J (2000) The chemistry of enamel caries. Crit Rev Oral Biol Med 11:481–495PubMedCrossRef
41.
go back to reference Gron P, Spinelli M, Trautz O, Brudevold F (1963) The effect of carbonate on the solubility of hydroxylapatite. Arch Oral Biol 8:251–263PubMedCrossRef Gron P, Spinelli M, Trautz O, Brudevold F (1963) The effect of carbonate on the solubility of hydroxylapatite. Arch Oral Biol 8:251–263PubMedCrossRef
42.
go back to reference Legeros RZ, Trautz OR, Legeros JP, Klein E, Shirra WP (1967) Apatite crystallites: effects of carbonate on morphology. Science 155:1409–1411PubMedCrossRef Legeros RZ, Trautz OR, Legeros JP, Klein E, Shirra WP (1967) Apatite crystallites: effects of carbonate on morphology. Science 155:1409–1411PubMedCrossRef
43.
go back to reference Roberson TM (2002) Cariology: the lesion, etiology, prevention, and control. In: Roberson TM, Heymann HO, Swift EJ (eds) Sturdevant’s art and science of operative dentistry. Mosby Elsevier, St Louis, pp 65–132 Roberson TM (2002) Cariology: the lesion, etiology, prevention, and control. In: Roberson TM, Heymann HO, Swift EJ (eds) Sturdevant’s art and science of operative dentistry. Mosby Elsevier, St Louis, pp 65–132
Metadata
Title
Chemical/Molecular Structure of the Dentin–Enamel Junction is Dependent on the Intratooth Location
Authors
Changqi Xu
Xiaomei Yao
Mary P. Walker
Yong Wang
Publication date
01-03-2009
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 3/2009
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-008-9212-8

Other articles of this Issue 3/2009

Calcified Tissue International 3/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine