Skip to main content
Top
Published in: European Radiology 10/2014

01-10-2014 | Molecular Imaging

Chemical exchange saturation transfer MR imaging of Parkinson’s disease at 3 Tesla

Authors: Chunmei Li, Shuai Peng, Rui Wang, Haibo Chen, Wen Su, Xuna Zhao, Jinyuan Zhou, Min Chen

Published in: European Radiology | Issue 10/2014

Login to get access

Abstract

Objectives

To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson’s disease (PD) in patients at 3 Tesla.

Methods

Twenty-seven PD patients (17 men and 10 women; age range, 54–77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55–73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (−6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls.

Results

Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively).

Conclusions

CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD.

Key Points

Total CEST signal in substantia nigra decreased in PD patients
Protein-based CEST signals in basal ganglia increased in PD patients
CEST could assist with the non-invasive molecular diagnosis for PD patients
Literature
1.
2.
go back to reference Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedCentralPubMedCrossRef Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedCentralPubMedCrossRef
3.
go back to reference Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86PubMedCrossRef Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86PubMedCrossRef
4.
go back to reference Michell AW, Lewis SJG, Foltynie T, Barker RA (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705PubMedCrossRef Michell AW, Lewis SJG, Foltynie T, Barker RA (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705PubMedCrossRef
5.
go back to reference Seppi K, Poewe W (2010) Brain magnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes. Neuroimaging Clin N Am 20:29–55PubMedCrossRef Seppi K, Poewe W (2010) Brain magnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes. Neuroimaging Clin N Am 20:29–55PubMedCrossRef
6.
go back to reference Vernon AC, Ballard C, Modo M (2010) Neuroimaging for Lewy body disease: is the in vivo molecular imaging of alpha-synuclein neuropathology required and feasible? Brain Res Rev 65:28–55PubMedCrossRef Vernon AC, Ballard C, Modo M (2010) Neuroimaging for Lewy body disease: is the in vivo molecular imaging of alpha-synuclein neuropathology required and feasible? Brain Res Rev 65:28–55PubMedCrossRef
7.
go back to reference Schocke MFH, Seppi K, Esterhammer R et al (2002) Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 58:575–580PubMedCrossRef Schocke MFH, Seppi K, Esterhammer R et al (2002) Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 58:575–580PubMedCrossRef
8.
go back to reference Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384PubMedCentralPubMedCrossRef Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384PubMedCentralPubMedCrossRef
9.
go back to reference Wang JJ, Lin WY, Lu CS et al (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261:210–217PubMedCrossRef Wang JJ, Lin WY, Lu CS et al (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261:210–217PubMedCrossRef
10.
go back to reference Rossi M, Ruottinen H, Elovaara I et al (2010) Brain iron deposition and sequence characteristics in Parkinsonism comparison of SWI, T-2* Maps, T-2-weighted-, and FLAIR-SPACE. Investig Radiol 45:795–802CrossRef Rossi M, Ruottinen H, Elovaara I et al (2010) Brain iron deposition and sequence characteristics in Parkinsonism comparison of SWI, T-2* Maps, T-2-weighted-, and FLAIR-SPACE. Investig Radiol 45:795–802CrossRef
11.
go back to reference Haller S, Badoud S, Nguyen D et al (2013) Differentiation between Parkinson disease and other forms of parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur Radiol 23:12–19PubMedCrossRef Haller S, Badoud S, Nguyen D et al (2013) Differentiation between Parkinson disease and other forms of parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur Radiol 23:12–19PubMedCrossRef
12.
go back to reference Tambasco N, Pelliccioli GP, Chiarini P et al (2003) Magnetization transfer changes of grey and white matter in Parkinson’s disease. Neuroradiology 45:224–230PubMed Tambasco N, Pelliccioli GP, Chiarini P et al (2003) Magnetization transfer changes of grey and white matter in Parkinson’s disease. Neuroradiology 45:224–230PubMed
13.
go back to reference Anik Y, Iseri P, Demirci A, Komsuoglu S, Inan N (2007) Magnetization transfer ratio in early period of Parkinson disease. Acad Radiol 14:189–192PubMedCrossRef Anik Y, Iseri P, Demirci A, Komsuoglu S, Inan N (2007) Magnetization transfer ratio in early period of Parkinson disease. Acad Radiol 14:189–192PubMedCrossRef
14.
go back to reference Morgen K, Sammer G, Weber L et al (2011) Structural brain abnormalities in patients with Parkinson disease: a comparative voxel-based analysis using T1-weighted MR imaging and magnetization transfer imaging. Am J Neuroradiol 32:2080–2086PubMedCrossRef Morgen K, Sammer G, Weber L et al (2011) Structural brain abnormalities in patients with Parkinson disease: a comparative voxel-based analysis using T1-weighted MR imaging and magnetization transfer imaging. Am J Neuroradiol 32:2080–2086PubMedCrossRef
15.
go back to reference Zhou J, van Zijl PC (2006) Chemical exchange saturation transfer imaging and spectroscopy. Progr NMR Spectr 48:109–136CrossRef Zhou J, van Zijl PC (2006) Chemical exchange saturation transfer imaging and spectroscopy. Progr NMR Spectr 48:109–136CrossRef
16.
17.
go back to reference Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090PubMedCrossRef Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090PubMedCrossRef
18.
go back to reference Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134PubMedCentralPubMedCrossRef Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134PubMedCentralPubMedCrossRef
19.
go back to reference van Buchem MA, Tofts PS (2000) Magnetization transfer imaging. Neuroimaging Clin N Am 10:771–788PubMed van Buchem MA, Tofts PS (2000) Magnetization transfer imaging. Neuroimaging Clin N Am 10:771–788PubMed
20.
go back to reference Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64PubMedCrossRef Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64PubMedCrossRef
23.
25.
go back to reference Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270PubMedCentralPubMedCrossRef Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270PubMedCentralPubMedCrossRef
26.
27.
go back to reference Jia G, Abaza R, Williams JD et al (2011) Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 33:647–654PubMedCrossRef Jia G, Abaza R, Williams JD et al (2011) Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 33:647–654PubMedCrossRef
28.
go back to reference Dula AN, Arlinghaus LR, Dortch RD et al (2013) Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 70:216–224PubMedCentralPubMedCrossRef Dula AN, Arlinghaus LR, Dortch RD et al (2013) Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 70:216–224PubMedCentralPubMedCrossRef
29.
go back to reference Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128PubMedCrossRef Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128PubMedCrossRef
30.
go back to reference Sun PZ, Zhou J, Sun W, Huang J, van Zijl PCM (2007) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27:1129–1136PubMedCrossRef Sun PZ, Zhou J, Sun W, Huang J, van Zijl PCM (2007) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27:1129–1136PubMedCrossRef
31.
go back to reference Zhao X, Wen Z, Huang F et al (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66:1033–1041PubMedCentralPubMedCrossRef Zhao X, Wen Z, Huang F et al (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66:1033–1041PubMedCentralPubMedCrossRef
32.
go back to reference Kirik D, Rosenblad C, Burer C et al (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791PubMed Kirik D, Rosenblad C, Burer C et al (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791PubMed
33.
go back to reference Hodaie M, Neimat JS, Lozano AM (2007) The dopaminergic nigrostriatal system and Parkinson’s disease: molecular events in development, disease, and cell death, and new therapeutic strategies. Neurosurgery 60:17–28PubMedCrossRef Hodaie M, Neimat JS, Lozano AM (2007) The dopaminergic nigrostriatal system and Parkinson’s disease: molecular events in development, disease, and cell death, and new therapeutic strategies. Neurosurgery 60:17–28PubMedCrossRef
34.
go back to reference Braak H, Sandmann-Keil D, Gai W, Braak E (1999) Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by alpha-synuclein immunocytochemistry. Neurosci Lett 265:67–69PubMedCrossRef Braak H, Sandmann-Keil D, Gai W, Braak E (1999) Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by alpha-synuclein immunocytochemistry. Neurosci Lett 265:67–69PubMedCrossRef
35.
go back to reference Tong JC, Wong H, Guttman M et al (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 133:172–188PubMedCrossRef Tong JC, Wong H, Guttman M et al (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 133:172–188PubMedCrossRef
36.
37.
go back to reference Zhou J, Blakeley JO, Hua J et al (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60:842–849PubMedCentralPubMedCrossRef Zhou J, Blakeley JO, Hua J et al (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60:842–849PubMedCentralPubMedCrossRef
38.
go back to reference Zhou J, Hong X, Zhao X, Gao J-H, Yuan J (2013) APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med 70:320–327PubMedCrossRef Zhou J, Hong X, Zhao X, Gao J-H, Yuan J (2013) APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med 70:320–327PubMedCrossRef
39.
go back to reference Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822PubMedCrossRef Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822PubMedCrossRef
40.
go back to reference Peden AH, Ironside JW (2012) Molecular pathology in neurodegenerative diseases. Curr Drug Targets 13:1548–1559PubMedCrossRef Peden AH, Ironside JW (2012) Molecular pathology in neurodegenerative diseases. Curr Drug Targets 13:1548–1559PubMedCrossRef
41.
go back to reference Keupp J, Baltes C, Harvey PR, van den Brink J (2011) Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain. Proc 19th Annual Meeting ISMRM, Montreal, Quebec, p 710 Keupp J, Baltes C, Harvey PR, van den Brink J (2011) Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain. Proc 19th Annual Meeting ISMRM, Montreal, Quebec, p 710
Metadata
Title
Chemical exchange saturation transfer MR imaging of Parkinson’s disease at 3 Tesla
Authors
Chunmei Li
Shuai Peng
Rui Wang
Haibo Chen
Wen Su
Xuna Zhao
Jinyuan Zhou
Min Chen
Publication date
01-10-2014
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 10/2014
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3241-7

Other articles of this Issue 10/2014

European Radiology 10/2014 Go to the issue