Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2017

01-01-2017 | Laboratory Investigation

Characterization of the distribution, retention, and efficacy of internal radiation of 188Re-lipid nanocapsules in an immunocompromised human glioblastoma model

Authors: Annabelle Cikankowitz, Anne Clavreul, Clément Tétaud, Laurent Lemaire, Audrey Rousseau, Nicolas Lepareur, Djamel Dabli, Francis Bouchet, Emmanuel Garcion, Philippe Menei, Olivier Couturier, François Hindré

Published in: Journal of Neuro-Oncology | Issue 1/2017

Login to get access

Abstract

Internal radiation strategies hold great promise for glioblastoma (GB) therapy. We previously developed a nanovectorized radiotherapy that consists of lipid nanocapsules loaded with a lipophilic complex of Rhenium-188 (LNC188Re-SSS). This approach resulted in an 83 % cure rate in the 9L rat glioma model, showing great promise. The efficacy of LNC188Re-SSS treatment was optimized through the induction of a T-cell immune response in this model, as it is highly immunogenic. However, this is not representative of the human situation where T-cell suppression is usually encountered in GB patients. Thus, in this study, we investigated the efficacy of LNC188Re-SSS in a human GB model implanted in T-cell deficient nude mice. We also analyzed the distribution and tissue retention of LNC188Re-SSS. We observed that intratumoral infusion of LNCs by CED led to their complete distribution throughout the tumor and peritumoral space without leakage into the contralateral hemisphere except when large volumes were used. Seventy percent of the 188Re-SSS activity was present in the tumor region 24 h after LNC188Re-SSS injection and no toxicity was observed in the healthy brain. Double fractionated internal radiotherapy with LNC188Re-SSS triggered survival responses in the immunocompromised human GB model with a cure rate of 50 %, which was not observed with external radiotherapy. In conclusion, LNC188Re-SSS can induce long-term survival in an immunosuppressive environment, highlighting its potential for GB therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996 Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996
2.
go back to reference Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466 Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466
4.
go back to reference Oh DS, Adamson DC, Kirkpatrick JP (2012) Targeted radiotherapy for malignant gliomas. Curr Drug Discov Technol 9(4):268–279CrossRefPubMed Oh DS, Adamson DC, Kirkpatrick JP (2012) Targeted radiotherapy for malignant gliomas. Curr Drug Discov Technol 9(4):268–279CrossRefPubMed
5.
6.
go back to reference von Neubeck C, Seidlitz A, Kitzler HH, Beuthien-Baumann B, Krause M (2015) Glioblastoma multiforme: emerging treatments and stratification markers beyond new drugs. Br J Radiol 88(1053):20150354CrossRef von Neubeck C, Seidlitz A, Kitzler HH, Beuthien-Baumann B, Krause M (2015) Glioblastoma multiforme: emerging treatments and stratification markers beyond new drugs. Br J Radiol 88(1053):20150354CrossRef
7.
go back to reference Allard E, Hindre F, Passirani C, Lemaire L, Lepareur N, Noiret N, Menei P, Benoit JP (2008) 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas. Eur J Nucl Med Mol Imaging 35(10):1838–1846CrossRefPubMedPubMedCentral Allard E, Hindre F, Passirani C, Lemaire L, Lepareur N, Noiret N, Menei P, Benoit JP (2008) 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas. Eur J Nucl Med Mol Imaging 35(10):1838–1846CrossRefPubMedPubMedCentral
8.
go back to reference Vanpouille-Box C, Lacoeuille F, Belloche C, Lepareur N, Lemaire L, LeJeune JJ, Benoit JP, Menei P, Couturier OF, Garcion E, Hindre F (2011) Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with (188)Re-lipid nanocapsules. Biomaterials 32(28):6781–6790CrossRefPubMed Vanpouille-Box C, Lacoeuille F, Belloche C, Lepareur N, Lemaire L, LeJeune JJ, Benoit JP, Menei P, Couturier OF, Garcion E, Hindre F (2011) Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with (188)Re-lipid nanocapsules. Biomaterials 32(28):6781–6790CrossRefPubMed
9.
go back to reference Vanpouille-Box C, Lacoeuille F, Roux J, Aube C, Garcion E, Lepareur N, Oberti F, Bouchet F, Noiret N, Garin E, Benoit JP, Couturier O, Hindre F (2011) Lipid nanocapsules loaded with rhenium-188 reduce tumor progression in a rat hepatocellular carcinoma model. PLoS One 6(3):e16926CrossRefPubMedPubMedCentral Vanpouille-Box C, Lacoeuille F, Roux J, Aube C, Garcion E, Lepareur N, Oberti F, Bouchet F, Noiret N, Garin E, Benoit JP, Couturier O, Hindre F (2011) Lipid nanocapsules loaded with rhenium-188 reduce tumor progression in a rat hepatocellular carcinoma model. PLoS One 6(3):e16926CrossRefPubMedPubMedCentral
10.
go back to reference Hureaux J, Lagarce F, Gagnadoux F, Rousselet MC, Moal V, Urban T, Benoit JP (2010) Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm Res 27(3):421–430CrossRefPubMed Hureaux J, Lagarce F, Gagnadoux F, Rousselet MC, Moal V, Urban T, Benoit JP (2010) Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm Res 27(3):421–430CrossRefPubMed
11.
go back to reference Lepareur N, Ardisson V, Noiret N, Boucher E, Raoul JL, Clement B, Garin E (2011) Automation of labelling of Lipiodol with high-activity generator-produced 188Re. Appl Radiat Isot 69(2):426–430CrossRefPubMed Lepareur N, Ardisson V, Noiret N, Boucher E, Raoul JL, Clement B, Garin E (2011) Automation of labelling of Lipiodol with high-activity generator-produced 188Re. Appl Radiat Isot 69(2):426–430CrossRefPubMed
12.
go back to reference Guo R, Zhang M, Xi Y, Ma Y, Liang S, Shi S, Miao Y, Li B (2014) Theranostic studies of human sodium iodide symporter imaging and therapy using 188Re: a human glioma study in mice. PLoS One 9(7):e102011CrossRefPubMedPubMedCentral Guo R, Zhang M, Xi Y, Ma Y, Liang S, Shi S, Miao Y, Li B (2014) Theranostic studies of human sodium iodide symporter imaging and therapy using 188Re: a human glioma study in mice. PLoS One 9(7):e102011CrossRefPubMedPubMedCentral
13.
go back to reference Srivastava SC (2012) Paving the way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven National Laboratory. Semin Nucl Med 42(3):151–163CrossRefPubMed Srivastava SC (2012) Paving the way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven National Laboratory. Semin Nucl Med 42(3):151–163CrossRefPubMed
14.
go back to reference Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94(3):299–312CrossRefPubMedPubMedCentral Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94(3):299–312CrossRefPubMedPubMedCentral
15.
go back to reference Stojiljkovic M, Piperski V, Dacevic M, Rakic L, Ruzdijic S, Kanazir S (2003) Characterization of 9L glioma model of the Wistar rat. J Neurooncol 63(1):1–7CrossRefPubMed Stojiljkovic M, Piperski V, Dacevic M, Rakic L, Ruzdijic S, Kanazir S (2003) Characterization of 9L glioma model of the Wistar rat. J Neurooncol 63(1):1–7CrossRefPubMed
16.
go back to reference Dubinski D, Wolfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM (2016) CD4 + T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro. Oncol 18(6):807–818 Dubinski D, Wolfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM (2016) CD4 + T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro. Oncol 18(6):807–818
17.
go back to reference See AP, Parker JJ, Waziri A (2015) The role of regulatory T cells and microglia in glioblastoma-associated immunosuppression. J Neurooncol 123(3):405–412CrossRefPubMed See AP, Parker JJ, Waziri A (2015) The role of regulatory T cells and microglia in glioblastoma-associated immunosuppression. J Neurooncol 123(3):405–412CrossRefPubMed
18.
go back to reference Clavreul A, Jean I, Preisser L, Chassevent A, Sapin A, Michalak S, Menei P (2009) Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cell Dev Biol Anim 45(9):500–511CrossRefPubMed Clavreul A, Jean I, Preisser L, Chassevent A, Sapin A, Michalak S, Menei P (2009) Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cell Dev Biol Anim 45(9):500–511CrossRefPubMed
19.
go back to reference Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19(6):875–880CrossRefPubMed Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19(6):875–880CrossRefPubMed
20.
go back to reference Reardon DA, Quinn JA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE 2nd, McLendon RE, Pegram CN, Provenzale JM, Dowell JM, Rich JN, Vredenburgh JJ, Desjardins A, Sampson JH, Gururangan S, Wong TZ, Badruddoja MA, Zhao XG, Bigner DD, Zalutsky MR (2006) Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med 47(6):912–918PubMed Reardon DA, Quinn JA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE 2nd, McLendon RE, Pegram CN, Provenzale JM, Dowell JM, Rich JN, Vredenburgh JJ, Desjardins A, Sampson JH, Gururangan S, Wong TZ, Badruddoja MA, Zhao XG, Bigner DD, Zalutsky MR (2006) Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med 47(6):912–918PubMed
21.
go back to reference Casacó A, López G, García I, Rodríguez JA, Fernández R, Figueredo J, Torres L, Perera A, Batista J, Leyva R, Peña Y, Amador Z, González A, Estupiñan B, Coca M, Hernández A, Puig M, Iglesias M, Hernández A, Ramos M, Rodríquez L, Suarez N (2008) Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol Ther 7(3):333–339CrossRefPubMed Casacó A, López G, García I, Rodríguez JA, Fernández R, Figueredo J, Torres L, Perera A, Batista J, Leyva R, Peña Y, Amador Z, González A, Estupiñan B, Coca M, Hernández A, Puig M, Iglesias M, Hernández A, Ramos M, Rodríquez L, Suarez N (2008) Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol Ther 7(3):333–339CrossRefPubMed
22.
go back to reference Li L, Quang TS, Gracely EJ, Kim JH, Emrich JG, Yaeger TE, Jenrette JM, Cohen SC, Black P, Brady LW (2010) A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg 113(2):192–198CrossRefPubMed Li L, Quang TS, Gracely EJ, Kim JH, Emrich JG, Yaeger TE, Jenrette JM, Cohen SC, Black P, Brady LW (2010) A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg 113(2):192–198CrossRefPubMed
23.
go back to reference Reulen HJ, Poepperl G, Goetz C, Gildehaus FJ, Schmidt M, Tatsch K, Pietsch T, Kraus T, Rachinger W (2015) Long-term outcome of patients with WHO Grade III and IV gliomas treated by fractionated intracavitary radioimmunotherapy. J Neurosurg 123(3):760–770CrossRefPubMed Reulen HJ, Poepperl G, Goetz C, Gildehaus FJ, Schmidt M, Tatsch K, Pietsch T, Kraus T, Rachinger W (2015) Long-term outcome of patients with WHO Grade III and IV gliomas treated by fractionated intracavitary radioimmunotherapy. J Neurosurg 123(3):760–770CrossRefPubMed
24.
go back to reference Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080CrossRefPubMedPubMedCentral Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080CrossRefPubMedPubMedCentral
25.
go back to reference Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30(12):2302–2318CrossRefPubMed Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30(12):2302–2318CrossRefPubMed
26.
go back to reference Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK (2016) Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg:1–10. Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK (2016) Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg:1–10.
27.
go back to reference Vogelbaum MA, Aghi MK (2015) Convection-enhanced delivery for the treatment of glioblastoma. Neuro. Oncol 17(Suppl 2):ii3–ii8 Vogelbaum MA, Aghi MK (2015) Convection-enhanced delivery for the treatment of glioblastoma. Neuro. Oncol 17(Suppl 2):ii3–ii8
29.
go back to reference Shultz MD, Wilson JD, Fuller CE, Zhang J, Dorn HC, Fatouros PP (2011) Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology 261(1):136–143CrossRefPubMedPubMedCentral Shultz MD, Wilson JD, Fuller CE, Zhang J, Dorn HC, Fatouros PP (2011) Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology 261(1):136–143CrossRefPubMedPubMedCentral
30.
go back to reference Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6(11):8788–8806CrossRefPubMedPubMedCentral Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6(11):8788–8806CrossRefPubMedPubMedCentral
31.
go back to reference Bernal GM, LaRiviere MJ, Mansour N, Pytel P, Cahill KE, Voce DJ, Kang S, Spretz R, Welp U, Noriega SE, Nunez L, Larsen G, Weichselbaum RR, Yamini B (2014) Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine 10(1):149–157PubMed Bernal GM, LaRiviere MJ, Mansour N, Pytel P, Cahill KE, Voce DJ, Kang S, Spretz R, Welp U, Noriega SE, Nunez L, Larsen G, Weichselbaum RR, Yamini B (2014) Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine 10(1):149–157PubMed
32.
go back to reference Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70(15):6303–6312CrossRefPubMedPubMedCentral Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70(15):6303–6312CrossRefPubMedPubMedCentral
33.
go back to reference Chen PY, Ozawa T, Drummond DC, Kalra A, Fitzgerald JB, Kirpotin DB, Wei KC, Butowski N, Prados MD, Berger MS, Forsayeth JR, Bankiewicz K, James CD (2013) Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neurooncology 15(2):189–197 Chen PY, Ozawa T, Drummond DC, Kalra A, Fitzgerald JB, Kirpotin DB, Wei KC, Butowski N, Prados MD, Berger MS, Forsayeth JR, Bankiewicz K, James CD (2013) Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neurooncology 15(2):189–197
34.
go back to reference Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90(2):315–320CrossRefPubMed Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90(2):315–320CrossRefPubMed
35.
go back to reference Saucier-Sawyer JK, Seo YE, Gaudin A, Quijano E, Song E, Sawyer AJ, Deng Y, Huttner A, Saltzman WM (2016) Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J Control Release 232:103–112CrossRefPubMed Saucier-Sawyer JK, Seo YE, Gaudin A, Quijano E, Song E, Sawyer AJ, Deng Y, Huttner A, Saltzman WM (2016) Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J Control Release 232:103–112CrossRefPubMed
36.
go back to reference Demaria S, Golden EB, Formenti SC (2015) Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol 1(9):1325–1332CrossRefPubMed Demaria S, Golden EB, Formenti SC (2015) Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol 1(9):1325–1332CrossRefPubMed
37.
go back to reference Sridharan V, Schoenfeld JD (2015) Immune effects of targeted radiation therapy for cancer. Discov Med 19(104):219–228PubMed Sridharan V, Schoenfeld JD (2015) Immune effects of targeted radiation therapy for cancer. Discov Med 19(104):219–228PubMed
38.
go back to reference Maier P, Hartmann L, Wenz F, Herskind C (2016) Cellular pathways in response to Ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci 14:17 (1) Maier P, Hartmann L, Wenz F, Herskind C (2016) Cellular pathways in response to Ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci 14:17 (1)
39.
go back to reference Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA (2000) Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int 24(9):621–633CrossRefPubMed Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA (2000) Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int 24(9):621–633CrossRefPubMed
40.
go back to reference Kaur E, Rajendra J, Jadhav S, Shridhar E, Goda JS, Moiyadi A, Dutt S (2015) Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis 36(6):685–695CrossRefPubMed Kaur E, Rajendra J, Jadhav S, Shridhar E, Goda JS, Moiyadi A, Dutt S (2015) Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis 36(6):685–695CrossRefPubMed
41.
go back to reference Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM (2003) Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci 116(Pt 20):4095–4106CrossRefPubMed Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM (2003) Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci 116(Pt 20):4095–4106CrossRefPubMed
42.
go back to reference Erenpreisa J, Ivanov A, Wheatley SP, Kosmacek EA, Ianzini F, Anisimov AP, Mackey M, Davis PJ, Plakhins G, Illidge TM (2008) Endopolyploidy in irradiated p53-deficient tumour cell lines: persistence of cell division activity in giant cells expressing Aurora-B kinase. Cell Biol Int 32(9):1044–1056CrossRefPubMedPubMedCentral Erenpreisa J, Ivanov A, Wheatley SP, Kosmacek EA, Ianzini F, Anisimov AP, Mackey M, Davis PJ, Plakhins G, Illidge TM (2008) Endopolyploidy in irradiated p53-deficient tumour cell lines: persistence of cell division activity in giant cells expressing Aurora-B kinase. Cell Biol Int 32(9):1044–1056CrossRefPubMedPubMedCentral
43.
go back to reference Erenpreisa J, Salmina K, Huna A, Kosmacek EA, Cragg MS, Ianzini F, Anisimov AP (2011) Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation. Cell Biol Int 35(7):687–695CrossRefPubMed Erenpreisa J, Salmina K, Huna A, Kosmacek EA, Cragg MS, Ianzini F, Anisimov AP (2011) Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation. Cell Biol Int 35(7):687–695CrossRefPubMed
44.
go back to reference Mirzayans R, Andrais B, Scott A, Wang YW, Murray D (2013) Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci 14(11):22409–22435CrossRefPubMedPubMedCentral Mirzayans R, Andrais B, Scott A, Wang YW, Murray D (2013) Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci 14(11):22409–22435CrossRefPubMedPubMedCentral
45.
go back to reference Schwarz-Finsterle J, Scherthan H, Huna A, Gonzalez P, Mueller P, Schmitt E, Erenpreisa J, Hausmann M (2013) Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells. Mutat Res 756(1–2):56–65CrossRefPubMed Schwarz-Finsterle J, Scherthan H, Huna A, Gonzalez P, Mueller P, Schmitt E, Erenpreisa J, Hausmann M (2013) Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells. Mutat Res 756(1–2):56–65CrossRefPubMed
46.
go back to reference Lainé AL, Clavreul A, Rousseau A, Tétaud C, Vessieres A, Garcion E, Jaouen G, Aubert L, Guilbert M, Benoit JP, Toillon RA, Passirani C (2014) Inhibition of ectopic glioma tumor growth by a potent ferrocenyl drug loaded into stealth lipid nanocapsules. Nanomedicine 10(8):1667–1677PubMed Lainé AL, Clavreul A, Rousseau A, Tétaud C, Vessieres A, Garcion E, Jaouen G, Aubert L, Guilbert M, Benoit JP, Toillon RA, Passirani C (2014) Inhibition of ectopic glioma tumor growth by a potent ferrocenyl drug loaded into stealth lipid nanocapsules. Nanomedicine 10(8):1667–1677PubMed
Metadata
Title
Characterization of the distribution, retention, and efficacy of internal radiation of 188Re-lipid nanocapsules in an immunocompromised human glioblastoma model
Authors
Annabelle Cikankowitz
Anne Clavreul
Clément Tétaud
Laurent Lemaire
Audrey Rousseau
Nicolas Lepareur
Djamel Dabli
Francis Bouchet
Emmanuel Garcion
Philippe Menei
Olivier Couturier
François Hindré
Publication date
01-01-2017
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2017
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-016-2289-4

Other articles of this Issue 1/2017

Journal of Neuro-Oncology 1/2017 Go to the issue