Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Research article

Characterization of progenitor cells derived from torn human rotator cuff tendons by gene expression patterns of chondrogenesis, osteogenesis, and adipogenesis

Authors: Issei Nagura, Takeshi Kokubu, Yutaka Mifune, Atsuyuki Inui, Fumiaki Takase, Yasuhiro Ueda, Takeshi Kataoka, Masahiro Kurosaka

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Background

It is important to regenerate the tendon-to-bone interface after rotator cuff repair to prevent re-tears. The cells from torn human rotator cuff were targeted, and their capacity for multilineage differentiation was investigated.

Methods

The edges of the rotator cuff were harvested during arthroscopic rotator cuff repair from nine patients, minced into pieces, and cultured on dishes. Adherent cells were cultured, phenotypically characterized. Then expandability, differentiation potential and gene expression were analyzed.

Results

Flow cytometry revealed that the mesenchymal stem cells (MSC)-related markers CD29, CD44, CD105, and CD166 were positive. However, CD14, CD34, and CD45 were negative. On RT-PCR analyses, the cells showed osteogenic, adipogenic, and chondrogenic potential after 3 weeks of culture under the respective differentiation conditions. In addition, SOX9, type II collagen, and type X collagen expression patterns during chondrogenesis were similar to those of endochondral ossification at the enthesis.

Conclusions

The cells derived from torn human rotator cuff are multipotent mesenchymal stem cells with the ability to undergo multilineage differentiation, suggesting that MSCs form this tissue could be regenerative capacity for potential self-repair.
Literature
1.
go back to reference Kasten P, Keil C, Grieser T, Raiss P, Streich N, Loew M. Prospective randomized comparison of arthroscopic versus mini-open rotator cuff repair of the supraspinatus tendon. Int Orthop. 2011;35:1663–70.CrossRefPubMedPubMedCentral Kasten P, Keil C, Grieser T, Raiss P, Streich N, Loew M. Prospective randomized comparison of arthroscopic versus mini-open rotator cuff repair of the supraspinatus tendon. Int Orthop. 2011;35:1663–70.CrossRefPubMedPubMedCentral
2.
go back to reference Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of t0068e rotator cuff. J Bone Joint Surg Am. 2000;82:505–15.PubMed Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of t0068e rotator cuff. J Bone Joint Surg Am. 2000;82:505–15.PubMed
3.
go back to reference Lafosse L, Brozska R, Toussaint B, Gobezie R. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am. 2007;89:1533–41.CrossRefPubMed Lafosse L, Brozska R, Toussaint B, Gobezie R. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am. 2007;89:1533–41.CrossRefPubMed
4.
go back to reference Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86:219–24.PubMed Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86:219–24.PubMed
5.
go back to reference Newsham-West R, Nicholson H, Walton M, Milburn P. Long-term of a healing bone-tendon interface: a histological observation in the sheep model. J Anat. 2007;210:318–27.CrossRefPubMedPubMedCentral Newsham-West R, Nicholson H, Walton M, Milburn P. Long-term of a healing bone-tendon interface: a histological observation in the sheep model. J Anat. 2007;210:318–27.CrossRefPubMedPubMedCentral
6.
go back to reference Harryman 2nd DT, Mack LA, Wang KY, Jaskins SE, Richardson ML, Matsen 3rd FA. Repairs of the rotator cuff: correlation of functional results with integrity of the cuff. J Bone Joint Surg Am. 1991;73:982–89.PubMed Harryman 2nd DT, Mack LA, Wang KY, Jaskins SE, Richardson ML, Matsen 3rd FA. Repairs of the rotator cuff: correlation of functional results with integrity of the cuff. J Bone Joint Surg Am. 1991;73:982–89.PubMed
7.
go back to reference Liu SH, Baker CL. Arthroscopically assisted rotator cuff repair: correlation of functional results with integrity of the cuff. Arthroscopy. 1994;10:54–60.CrossRefPubMed Liu SH, Baker CL. Arthroscopically assisted rotator cuff repair: correlation of functional results with integrity of the cuff. Arthroscopy. 1994;10:54–60.CrossRefPubMed
8.
go back to reference St Pierre P, Olson EJ, Elliott JJ, O’Hair KC, McKinney LA, Ryan J. Tendon-healing to cortical bone compared with healing to a cancellous trough. A biomechanical and histological evaluation in gouts. J Bone Joint Surg Am. 1995;77:1858–66.PubMed St Pierre P, Olson EJ, Elliott JJ, O’Hair KC, McKinney LA, Ryan J. Tendon-healing to cortical bone compared with healing to a cancellous trough. A biomechanical and histological evaluation in gouts. J Bone Joint Surg Am. 1995;77:1858–66.PubMed
9.
go back to reference Bedi A, Kawamura S, Ying L, Rodeo SA. Differences in tendon graft healing between the intra-articular and extra-articular ends of the bone tunnel. HSS J. 2009;5:51–7.CrossRefPubMedPubMedCentral Bedi A, Kawamura S, Ying L, Rodeo SA. Differences in tendon graft healing between the intra-articular and extra-articular ends of the bone tunnel. HSS J. 2009;5:51–7.CrossRefPubMedPubMedCentral
10.
go back to reference Funakoshi T, Martin S, Spector M. Distribution of lubricin in the ruptured human rotator cuff and biceps tendon. Clin Orthop Relat Res. 2010;468:1588–99.CrossRefPubMedPubMedCentral Funakoshi T, Martin S, Spector M. Distribution of lubricin in the ruptured human rotator cuff and biceps tendon. Clin Orthop Relat Res. 2010;468:1588–99.CrossRefPubMedPubMedCentral
11.
go back to reference Sun Y, Berger EJ, Zhao C, Jay GD, An KN, Amadio PC. Expression and mapping of lubricin in canine flexor tendon. J Orthop Res. 2006;24:1861–68.CrossRefPubMed Sun Y, Berger EJ, Zhao C, Jay GD, An KN, Amadio PC. Expression and mapping of lubricin in canine flexor tendon. J Orthop Res. 2006;24:1861–68.CrossRefPubMed
12.
go back to reference Rodeo SA. Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg. 2007;16:191–7.CrossRef Rodeo SA. Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg. 2007;16:191–7.CrossRef
13.
go back to reference Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37:2126–33.CrossRefPubMed Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37:2126–33.CrossRefPubMed
14.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMed
15.
16.
go back to reference Paulty S, Klatte F, Strobel C, Schmidmaier G, Greiner S, Scheibel M, Wildermann B. Characterization of tendon cell cultures of the human rotator cuff. European Cells and Materials. 2010;20:84–97. Paulty S, Klatte F, Strobel C, Schmidmaier G, Greiner S, Scheibel M, Wildermann B. Characterization of tendon cell cultures of the human rotator cuff. European Cells and Materials. 2010;20:84–97.
17.
go back to reference Randelli P, Conforti E, Piccoli M, Ragone V, Creo P, Cirillo F, Masuzzo P, Tringali C, Cabitza P, Tettamanti G, Gangliano N, Anastasia L. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like renewal and multipotential differentiation capacity. Am J Sports Med. 2013;41:1653–64.CrossRefPubMed Randelli P, Conforti E, Piccoli M, Ragone V, Creo P, Cirillo F, Masuzzo P, Tringali C, Cabitza P, Tettamanti G, Gangliano N, Anastasia L. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like renewal and multipotential differentiation capacity. Am J Sports Med. 2013;41:1653–64.CrossRefPubMed
18.
go back to reference Tsai CC, Huang TF, Ma HL, Chiang ER, Hung SC. Isolation of mesenchymal stem cells form shoulder rotator cuff: a potential source for muscle and tendon repair. Cell Transplant. 2013;22:413–22.CrossRefPubMed Tsai CC, Huang TF, Ma HL, Chiang ER, Hung SC. Isolation of mesenchymal stem cells form shoulder rotator cuff: a potential source for muscle and tendon repair. Cell Transplant. 2013;22:413–22.CrossRefPubMed
19.
go back to reference Utsunomiya H, Uchida S, Sekiya I, Sakai A, Moridera K, Nakamura T. Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears. Am J Sports Med. 2013;41:657–68.CrossRefPubMed Utsunomiya H, Uchida S, Sekiya I, Sakai A, Moridera K, Nakamura T. Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears. Am J Sports Med. 2013;41:657–68.CrossRefPubMed
20.
21.
go back to reference Cristofalo VJ, Allen RG, Pingnolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A. 1998;95:10614–19.CrossRefPubMedPubMedCentral Cristofalo VJ, Allen RG, Pingnolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A. 1998;95:10614–19.CrossRefPubMedPubMedCentral
22.
go back to reference Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D, Gazit Z. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells. 2006;24:1728–37.CrossRefPubMed Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D, Gazit Z. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells. 2006;24:1728–37.CrossRefPubMed
23.
go back to reference Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Dean R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefPubMed Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Dean R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefPubMed
24.
go back to reference Gumina S, Di Giorgio G, Bertino A, Della Rocca C, Sardella B, Postacchini F. Inflammatory infiltrate of the edges of a torn rotator cuff. Int Orthop. 2006;30:371–4.CrossRefPubMedPubMedCentral Gumina S, Di Giorgio G, Bertino A, Della Rocca C, Sardella B, Postacchini F. Inflammatory infiltrate of the edges of a torn rotator cuff. Int Orthop. 2006;30:371–4.CrossRefPubMedPubMedCentral
25.
go back to reference Nourissat G, Diop A, Maurel N, Salvat C, Dumont S, Pigenet A, Gosset M, Houard X, Berenbaum F. Mesenchymal stem cell therapy regenerates the native bone-tendon junction after surgical repair in a degenerative rat model. PLoS One. 2010;18:e12248.CrossRef Nourissat G, Diop A, Maurel N, Salvat C, Dumont S, Pigenet A, Gosset M, Houard X, Berenbaum F. Mesenchymal stem cell therapy regenerates the native bone-tendon junction after surgical repair in a degenerative rat model. PLoS One. 2010;18:e12248.CrossRef
26.
go back to reference Manning CN, Kim HM, Sakiyama-Elbert S, Galatz LM, Havliglu N, Thomopoulos S. Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop Res. 2011;29:1099–105.CrossRefPubMed Manning CN, Kim HM, Sakiyama-Elbert S, Galatz LM, Havliglu N, Thomopoulos S. Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop Res. 2011;29:1099–105.CrossRefPubMed
27.
go back to reference Oliva F, Barisani D, Grasso A, Maffulli N. Gene expression analysis in calcific tendinopathy of the rotator cuff. Eur Cell Mater. 2011;20:548–57. Oliva F, Barisani D, Grasso A, Maffulli N. Gene expression analysis in calcific tendinopathy of the rotator cuff. Eur Cell Mater. 2011;20:548–57.
28.
go back to reference Sekiya I, David C, Darwin J. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun. 2001;284:411–8.CrossRefPubMed Sekiya I, David C, Darwin J. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun. 2001;284:411–8.CrossRefPubMed
29.
go back to reference Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22:85–9.CrossRefPubMed Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22:85–9.CrossRefPubMed
30.
go back to reference Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of pro alpha 1 (II) collagen gene. Mol Cell Biol. 1997;17:2336–46.CrossRefPubMedPubMedCentral Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of pro alpha 1 (II) collagen gene. Mol Cell Biol. 1997;17:2336–46.CrossRefPubMedPubMedCentral
31.
go back to reference Zhao Q, Eberspaecher H, Lefebvre V, de Crombrugghe B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dey Dyn. 1997;209:377–86.CrossRef Zhao Q, Eberspaecher H, Lefebvre V, de Crombrugghe B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dey Dyn. 1997;209:377–86.CrossRef
32.
go back to reference Thomopoulos S, Hattersley G, Rosen V, Mertens M, Galatz L, Williams GR, Soslowsky LJ. The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. J Orthop Res. 2002;20:454–63.CrossRefPubMed Thomopoulos S, Hattersley G, Rosen V, Mertens M, Galatz L, Williams GR, Soslowsky LJ. The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. J Orthop Res. 2002;20:454–63.CrossRefPubMed
33.
go back to reference Fujioka H, Thakur R, Wang GJ, Mizuno K, Balian G, Hurwitz SR. Comparison of surgically attached and nonattached repair of the rat Achilles tendon-bone interface. Cellular organization and type X collagen expression. Connect Tissue Res. 1998;37:205–18.CrossRefPubMed Fujioka H, Thakur R, Wang GJ, Mizuno K, Balian G, Hurwitz SR. Comparison of surgically attached and nonattached repair of the rat Achilles tendon-bone interface. Cellular organization and type X collagen expression. Connect Tissue Res. 1998;37:205–18.CrossRefPubMed
34.
go back to reference Galatz L, Rothermich S, VanderPloeg K, Peterson B, Sandell L, Thomopoulos S. Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J Orthop Res. 2007;25:1621–8.CrossRefPubMed Galatz L, Rothermich S, VanderPloeg K, Peterson B, Sandell L, Thomopoulos S. Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J Orthop Res. 2007;25:1621–8.CrossRefPubMed
Metadata
Title
Characterization of progenitor cells derived from torn human rotator cuff tendons by gene expression patterns of chondrogenesis, osteogenesis, and adipogenesis
Authors
Issei Nagura
Takeshi Kokubu
Yutaka Mifune
Atsuyuki Inui
Fumiaki Takase
Yasuhiro Ueda
Takeshi Kataoka
Masahiro Kurosaka
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0373-2

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue