Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2017

Open Access 01-02-2017 | Original Article

Characterization of [11C]Lu AE92686 as a PET radioligand for phosphodiesterase 10A in the nonhuman primate brain

Authors: Kai-Chun Yang, Vladimir Stepanov, Nahid Amini, Stefan Martinsson, Akihiro Takano, Jacob Nielsen, Christoffer Bundgaard, Benny Bang-Andersen, Sarah Grimwood, Christer Halldin, Lars Farde, Sjoerd J. Finnema

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 2/2017

Login to get access

Abstract

Purpose

[11C]Lu AE92686 is a positron emission tomography (PET) radioligand that has recently been validated for examining phosphodiesterase 10A (PDE10A) in the human striatum. [11C]Lu AE92686 has high affinity for PDE10A (IC 50 = 0.39 nM) and may also be suitable for examination of the substantia nigra, a region with low density of PDE10A. Here, we report characterization of regional [11C]Lu AE92686 binding to PDE10A in the nonhuman primate (NHP) brain.

Methods

A total of 11 PET measurements, seven baseline and four following pretreatment with unlabeled Lu AE92686 or the structurally unrelated PDE10A inhibitor MP-10, were performed in five NHPs using a high resolution research tomograph (HRRT). [11C]Lu AE92686 binding was quantified using a radiometabolite-corrected arterial input function and compartmental and graphical modeling approaches.

Results

Regional time-activity curves were best described with the two-tissue compartment model (2TCM). However, the distribution volume (V T) values for all regions were obtained by the Logan plot analysis, as reliable cerebellar V T values could not be derived by the 2TCM. For cerebellum, a proposed reference region, V T values increased by ∼30 % with increasing PET measurement duration from 63 to 123 min, while V T values in target regions remained stable. Both pretreatment drugs significantly decreased [11C]Lu AE92686 binding in target regions, while no significant effect on cerebellum was observed. Binding potential (BP ND) values, derived with the simplified reference tissue model (SRTM), were 13–17 in putamen and 3–5 in substantia nigra and correlated well to values from the Logan plot analysis.

Conclusions

The method proposed for quantification of [11C]Lu AE92686 binding in applied studies in NHP is based on 63 min PET data and SRTM with cerebellum as a reference region. The study supports that [11C]Lu AE92686 can be used for PET examinations of PDE10A binding also in substantia nigra.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wilson LS, Brandon NJ. Emerging biology of PDE10A. Curr Pharm Des. 2015;21(3):378–88.CrossRef Wilson LS, Brandon NJ. Emerging biology of PDE10A. Curr Pharm Des. 2015;21(3):378–88.CrossRef
2.
go back to reference Charych EI, Jiang L-X, Lo F, Sullivan K, Brandon NJ. Interplay of palmitoylation and phosphorylation in the trafficking and localization of phosphodiesterase 10A: implications for the treatment of schizophrenia. J Neurosci. 2010;30(27):9027–37.CrossRef Charych EI, Jiang L-X, Lo F, Sullivan K, Brandon NJ. Interplay of palmitoylation and phosphorylation in the trafficking and localization of phosphodiesterase 10A: implications for the treatment of schizophrenia. J Neurosci. 2010;30(27):9027–37.CrossRef
3.
go back to reference Seeger TF, Bartlett B, Coskran TM, et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 2003;985(2):113–26.CrossRef Seeger TF, Bartlett B, Coskran TM, et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 2003;985(2):113–26.CrossRef
4.
go back to reference Coskran TM, Morton D, Menniti FS, et al. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem. 2006;54(11):1205–13.CrossRef Coskran TM, Morton D, Menniti FS, et al. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem. 2006;54(11):1205–13.CrossRef
5.
go back to reference Giorgi M, Melchiorri G, Nuccetelli V, et al. PDE10A and PDE10A-dependent cAMP catabolism are dysregulated oppositely in striatum and nucleus accumbens after lesion of midbrain dopamine neurons in rat: a key step in parkinsonism physiopathology. Neurobiol Dis. 2011;43(1):293–303.CrossRef Giorgi M, Melchiorri G, Nuccetelli V, et al. PDE10A and PDE10A-dependent cAMP catabolism are dysregulated oppositely in striatum and nucleus accumbens after lesion of midbrain dopamine neurons in rat: a key step in parkinsonism physiopathology. Neurobiol Dis. 2011;43(1):293–303.CrossRef
6.
go back to reference Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Front Neuroanat. 2011;5:43.CrossRef Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Front Neuroanat. 2011;5:43.CrossRef
7.
go back to reference Kehler J, Nielsen J. PDE10A inhibitors: novel therapeutic drugs for schizophrenia. Curr Pharm Des. 2011;17(2):137–50.CrossRef Kehler J, Nielsen J. PDE10A inhibitors: novel therapeutic drugs for schizophrenia. Curr Pharm Des. 2011;17(2):137–50.CrossRef
8.
go back to reference Niccolini F, Foltynie T, Marques TR, et al. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain. 2015;138(10):3003–15.CrossRef Niccolini F, Foltynie T, Marques TR, et al. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain. 2015;138(10):3003–15.CrossRef
9.
go back to reference Kehler J, Kilburn JP, Estrada S, et al. Discovery and development of 11C-Lu AE92686 as a radioligand for PET imaging of phosphodiesterase10A in the brain. J Nucl Med. 2014;55(9):1513–8.CrossRef Kehler J, Kilburn JP, Estrada S, et al. Discovery and development of 11C-Lu AE92686 as a radioligand for PET imaging of phosphodiesterase10A in the brain. J Nucl Med. 2014;55(9):1513–8.CrossRef
10.
go back to reference Plisson C, Salinas C, Weinzimmer D, et al. Radiosynthesis and in vivo evaluation of [11 C] MP-10 as a positron emission tomography radioligand for phosphodiesterase 10A. Nucl Med Biol. 2011;38(6):875–84.CrossRef Plisson C, Salinas C, Weinzimmer D, et al. Radiosynthesis and in vivo evaluation of [11 C] MP-10 as a positron emission tomography radioligand for phosphodiesterase 10A. Nucl Med Biol. 2011;38(6):875–84.CrossRef
11.
go back to reference Lin SF, Labaree D, Chen MK, et al. Further evaluation of [11C] MP-10 as a radiotracer for phosphodiesterase 10A: PET imaging study in rhesus monkeys and brain tissue metabolite analysis. Synapse. 2015;69(2):86–95.CrossRef Lin SF, Labaree D, Chen MK, et al. Further evaluation of [11C] MP-10 as a radiotracer for phosphodiesterase 10A: PET imaging study in rhesus monkeys and brain tissue metabolite analysis. Synapse. 2015;69(2):86–95.CrossRef
12.
go back to reference Plisson C, Weinzimmer D, Jakobsen S, et al. Phosphodiesterase 10A PET radioligand development program: from pig to human. J Nucl Med. 2014;55(4):595–601.CrossRef Plisson C, Weinzimmer D, Jakobsen S, et al. Phosphodiesterase 10A PET radioligand development program: from pig to human. J Nucl Med. 2014;55(4):595–601.CrossRef
13.
go back to reference Hwang D-R, Hu E, Rumfelt S, et al. Initial characterization of a PDE10A selective positron emission tomography tracer [11 C] AMG 7980 in non-human primates. Nucl Med Biol. 2014;41(4):343–9.CrossRef Hwang D-R, Hu E, Rumfelt S, et al. Initial characterization of a PDE10A selective positron emission tomography tracer [11 C] AMG 7980 in non-human primates. Nucl Med Biol. 2014;41(4):343–9.CrossRef
14.
go back to reference Takano A, Stepanov V, Gulyás B, et al. Evaluation of a novel PDE10APET radioligand, [11C]T-773, in nonhuman primates: brain and whole body PET and brain autoradiography. Synapse. 2015;69(7):345–55.CrossRef Takano A, Stepanov V, Gulyás B, et al. Evaluation of a novel PDE10APET radioligand, [11C]T-773, in nonhuman primates: brain and whole body PET and brain autoradiography. Synapse. 2015;69(7):345–55.CrossRef
15.
go back to reference Liu H, Jin H, Yue X, et al. Preclinical evaluation of a promising C-11 labeled PET tracer for imaging phosphodiesterase 10A in the brain of living subject. Neuroimage. 2015;121:253–62.CrossRef Liu H, Jin H, Yue X, et al. Preclinical evaluation of a promising C-11 labeled PET tracer for imaging phosphodiesterase 10A in the brain of living subject. Neuroimage. 2015;121:253–62.CrossRef
16.
go back to reference Van Laere K, Ahmad RU, Hudyana H, et al. Quantification of 18F-JNJ-42259152, a novel phosphodiesterase 10A PET tracer: kinetic modeling and test–retest study in human brain. J Nucl Med. 2013;54(8):1285–93.CrossRef Van Laere K, Ahmad RU, Hudyana H, et al. Quantification of 18F-JNJ-42259152, a novel phosphodiesterase 10A PET tracer: kinetic modeling and test–retest study in human brain. J Nucl Med. 2013;54(8):1285–93.CrossRef
17.
go back to reference Celen S, Koole M, Ooms M, et al. Preclinical evaluation of [18F]JNJ42259152 as a PET tracer for PDE10A. Neuroimage. 2013;82:13–22.CrossRef Celen S, Koole M, Ooms M, et al. Preclinical evaluation of [18F]JNJ42259152 as a PET tracer for PDE10A. Neuroimage. 2013;82:13–22.CrossRef
18.
go back to reference Barret O, Thomae D, Tavares A, et al. In vivo assessment and dosimetry of 2 novel PDE10A PET radiotracers in humans: 18F-MNI-659 and 18F-MNI-654. J Nucl Med. 2014;55(8):1297–304.CrossRef Barret O, Thomae D, Tavares A, et al. In vivo assessment and dosimetry of 2 novel PDE10A PET radiotracers in humans: 18F-MNI-659 and 18F-MNI-654. J Nucl Med. 2014;55(8):1297–304.CrossRef
19.
go back to reference Hwang D-R, Hu E, Allen JR, et al. Radiosynthesis and initial characterization of a PDE10A specific PET tracer [18 F]AMG 580 in non-human primates. Nucl Med Biol. 2015;42(8):654–63.CrossRef Hwang D-R, Hu E, Allen JR, et al. Radiosynthesis and initial characterization of a PDE10A specific PET tracer [18 F]AMG 580 in non-human primates. Nucl Med Biol. 2015;42(8):654–63.CrossRef
20.
go back to reference Laruelle M, Slifstein M, Huang Y. Relationships between radiotracer properties and image quality in molecular imaging of the brain with positron emission tomography. Mol Imaging Biol. 2003;5(6):363–75.CrossRef Laruelle M, Slifstein M, Huang Y. Relationships between radiotracer properties and image quality in molecular imaging of the brain with positron emission tomography. Mol Imaging Biol. 2003;5(6):363–75.CrossRef
21.
go back to reference Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem. 2010;113(2):287–302.CrossRef Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem. 2010;113(2):287–302.CrossRef
22.
go back to reference Council NR. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: The National Academies Press; 2011. Council NR. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: The National Academies Press; 2011.
23.
go back to reference Verhoest PR, Chapin DS, Corman M, et al. Discovery of a novel class of phosphodiesterase 10A inhibitors and identification of clinical candidate 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920) for the treatment of schizophrenia. J Med Chem. 2009;52(16):5188–96.CrossRef Verhoest PR, Chapin DS, Corman M, et al. Discovery of a novel class of phosphodiesterase 10A inhibitors and identification of clinical candidate 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920) for the treatment of schizophrenia. J Med Chem. 2009;52(16):5188–96.CrossRef
24.
go back to reference Finnema SJ, Stepanov V, Ettrup A, et al. Characterization of [11C]Cimbi-36 as an agonist PET radioligand for the 5-HT2A and 5-HT2C receptors in the nonhuman primate brain. Neuroimage. 2014;84:342–53.CrossRef Finnema SJ, Stepanov V, Ettrup A, et al. Characterization of [11C]Cimbi-36 as an agonist PET radioligand for the 5-HT2A and 5-HT2C receptors in the nonhuman primate brain. Neuroimage. 2014;84:342–53.CrossRef
25.
go back to reference Finnema SJ, Halldin C, Bang-Andersen B, Bundgaard C, Farde L. Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [(11)C]MADAM PET study. Psychopharmacology. 2015;232(21–22):4159–67.CrossRef Finnema SJ, Halldin C, Bang-Andersen B, Bundgaard C, Farde L. Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [(11)C]MADAM PET study. Psychopharmacology. 2015;232(21–22):4159–67.CrossRef
26.
go back to reference Varrone A, Sjöholm N, Eriksson L, Gulyás B, Halldin C, Farde L. Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging. 2009;36(10):1639–50.CrossRef Varrone A, Sjöholm N, Eriksson L, Gulyás B, Halldin C, Farde L. Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging. 2009;36(10):1639–50.CrossRef
27.
go back to reference Logan J, Fowler JS, Volkow ND, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10(5):740–7.CrossRef Logan J, Fowler JS, Volkow ND, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10(5):740–7.CrossRef
28.
go back to reference Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3):153–8.CrossRef Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3):153–8.CrossRef
29.
go back to reference Logan J, Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16(5):834–40.CrossRef Logan J, Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16(5):834–40.CrossRef
30.
go back to reference Akaike H. An information criterion (AIC). Math Sci. 1976;14(153):5–9. Akaike H. An information criterion (AIC). Math Sci. 1976;14(153):5–9.
31.
go back to reference Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab. 2010;30(1):46–50.CrossRef Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab. 2010;30(1):46–50.CrossRef
32.
go back to reference Zanderigo F, Ogden RT, Parsey RV. Reference region approaches in PET: a comparative study on multiple radioligands. J Cereb Blood Flow Metab. 2013;33(6):888–97.CrossRef Zanderigo F, Ogden RT, Parsey RV. Reference region approaches in PET: a comparative study on multiple radioligands. J Cereb Blood Flow Metab. 2013;33(6):888–97.CrossRef
33.
go back to reference Parsey RV, Slifstein M, Hwang D-R, et al. Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C]WAY-100635 in humans: comparison of arterial and reference tissue input functions. J Cereb Blood Flow Metab. 2000;20(7):1111–33.CrossRef Parsey RV, Slifstein M, Hwang D-R, et al. Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C]WAY-100635 in humans: comparison of arterial and reference tissue input functions. J Cereb Blood Flow Metab. 2000;20(7):1111–33.CrossRef
34.
go back to reference Gunn RN, Sargent PA, Bench CJ, et al. Tracer kinetic modeling of the 5-HT1AReceptor Ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage. 1998;8(4):426–40.CrossRef Gunn RN, Sargent PA, Bench CJ, et al. Tracer kinetic modeling of the 5-HT1AReceptor Ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage. 1998;8(4):426–40.CrossRef
35.
go back to reference Sandiego CM, Gallezot J-D, Lim K, et al. Reference region modeling approaches for amphetamine challenge studies with [11C]FLB 457 and PET. J Cereb Blood Flow Metab. 2015;35(4):623–9.CrossRef Sandiego CM, Gallezot J-D, Lim K, et al. Reference region modeling approaches for amphetamine challenge studies with [11C]FLB 457 and PET. J Cereb Blood Flow Metab. 2015;35(4):623–9.CrossRef
36.
go back to reference Finnema SJ, Scheinin M, Shahid M, et al. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology. 2015;232(21):4129–57.CrossRef Finnema SJ, Scheinin M, Shahid M, et al. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology. 2015;232(21):4129–57.CrossRef
37.
go back to reference Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN. A graphical method to compare the in vivo binding potential of PET radioligands in the absence of a reference region: application to [11C]PBR28 and [18F]PBR111 for TSPO imaging. J Cereb Blood Flow Metab. 2014;34(7):1162–8.CrossRef Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN. A graphical method to compare the in vivo binding potential of PET radioligands in the absence of a reference region: application to [11C]PBR28 and [18F]PBR111 for TSPO imaging. J Cereb Blood Flow Metab. 2014;34(7):1162–8.CrossRef
38.
go back to reference Lammertsma AA, Bench CJ, Hume SP, et al. Comparison of methods for analysis of clinical [11C]Raclopride studies. J Cereb Blood Flow Metab. 1996;16(1):42–52.CrossRef Lammertsma AA, Bench CJ, Hume SP, et al. Comparison of methods for analysis of clinical [11C]Raclopride studies. J Cereb Blood Flow Metab. 1996;16(1):42–52.CrossRef
39.
go back to reference Shrestha S, Hirvonen J, Hines CS, et al. Serotonin-1A receptors in major depression quantified using PET: controversies, confounds, and recommendations. Neuroimage. 2012;59(4):3243–51.CrossRef Shrestha S, Hirvonen J, Hines CS, et al. Serotonin-1A receptors in major depression quantified using PET: controversies, confounds, and recommendations. Neuroimage. 2012;59(4):3243–51.CrossRef
40.
go back to reference Zoghbi SS, Shetty HU, Ichise M, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med. 2006;47(3):520–7. Zoghbi SS, Shetty HU, Ichise M, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med. 2006;47(3):520–7.
41.
go back to reference Pike VW. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30(8):431–40.CrossRef Pike VW. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30(8):431–40.CrossRef
42.
go back to reference Leroy C, Comtat C, Trebossen R, Syrota A, Martinot JL, Ribeiro MJ. Assessment of 11C-PE2I binding to the neuronal dopamine transporter in humans with the high-spatial-resolution PET scanner HRRT. J Nucl Med. 2007;48(4):538–46.CrossRef Leroy C, Comtat C, Trebossen R, Syrota A, Martinot JL, Ribeiro MJ. Assessment of 11C-PE2I binding to the neuronal dopamine transporter in humans with the high-spatial-resolution PET scanner HRRT. J Nucl Med. 2007;48(4):538–46.CrossRef
43.
go back to reference Schain M, Tóth M, Cselényi Z, et al. Improved mapping and quantification of serotonin transporter availability in the human brainstem with the HRRT. Eur J Nucl Med Mol Imaging. 2013;40(2):228–37.CrossRef Schain M, Tóth M, Cselényi Z, et al. Improved mapping and quantification of serotonin transporter availability in the human brainstem with the HRRT. Eur J Nucl Med Mol Imaging. 2013;40(2):228–37.CrossRef
Metadata
Title
Characterization of [11C]Lu AE92686 as a PET radioligand for phosphodiesterase 10A in the nonhuman primate brain
Authors
Kai-Chun Yang
Vladimir Stepanov
Nahid Amini
Stefan Martinsson
Akihiro Takano
Jacob Nielsen
Christoffer Bundgaard
Benny Bang-Andersen
Sarah Grimwood
Christer Halldin
Lars Farde
Sjoerd J. Finnema
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 2/2017
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-016-3544-9

Other articles of this Issue 2/2017

European Journal of Nuclear Medicine and Molecular Imaging 2/2017 Go to the issue