Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 4/2013

01-04-2013 | Knee

Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury

Authors: Yohei Shimokochi, Jatin P. Ambegaonkar, Eric G. Meyer, Sae Yong Lee, Sandra J. Shultz

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 4/2013

Login to get access

Abstract

Purpose

To examine the effects of different sagittal plane body positions during single-leg landings on biomechanics and muscle activation parameters associated with risk for anterior cruciate ligament (ACL) injury.

Methods

Twenty participants performed single-leg drop landings onto a force plate using the following landing styles: self-selected, leaning forward (LFL) and upright (URL). Lower extremity and trunk 3D biomechanics and lower extremity muscle activities were recorded using motion analysis and surface electromyography, respectively. Differences in landing styles were examined using 2-way Repeated-measures ANOVAs (sex × landing conditions) followed by Bonferroni pairwise comparisons.

Results

Participants demonstrated greater peak vertical ground reaction force, greater peak knee extensor moment, lesser plantar flexion, lesser or no hip extensor moments, and lesser medial and lateral gastrocnemius and lateral quadriceps muscle activations during URL than during LFL. These modifications of lower extremity biomechanics across landing conditions were similar between men and women.

Conclusions

Leaning forward while landing appears to protect the ACL by increasing the shock absorption capacity and knee flexion angles and decreasing anterior shear force due to the knee joint compression force and quadriceps muscle activation. Conversely, landing upright appears to be ACL harmful by increasing the post-impact force of landing and quadriceps muscle activity while decreasing knee flexion angles, all of which lead to a greater tibial anterior shear force and ACL loading. ACL injury prevention programmes should include exercise regimens to improve sagittal plane body position control during landing motions.
Literature
1.
go back to reference Arms SW, Pope MH, Johnson RJ, Fischer RA, Arvidsson I, Eriksson E (1984) The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med 12(1):8–18PubMedCrossRef Arms SW, Pope MH, Johnson RJ, Fischer RA, Arvidsson I, Eriksson E (1984) The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med 12(1):8–18PubMedCrossRef
2.
go back to reference Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D’Ambrosia R (1988) Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16(2):113–122PubMedCrossRef Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D’Ambrosia R (1988) Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16(2):113–122PubMedCrossRef
3.
go back to reference Blackburn JT, Padua DA (2008) Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin Biomech (Bristol Avon) 23(3):313–319CrossRef Blackburn JT, Padua DA (2008) Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin Biomech (Bristol Avon) 23(3):313–319CrossRef
4.
go back to reference Blackburn JT, Padua DA (2009) Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J Athl Train 44(2):174–179PubMedCrossRef Blackburn JT, Padua DA (2009) Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J Athl Train 44(2):174–179PubMedCrossRef
5.
go back to reference Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMed Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMed
6.
go back to reference Boden BP, Torg JS, Knowles SB, Hewett TE (2009) Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 37(2):252–259PubMedCrossRef Boden BP, Torg JS, Knowles SB, Hewett TE (2009) Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 37(2):252–259PubMedCrossRef
7.
go back to reference Cerulli G, Benoit DL, Lamontagne M, Caraffa A, Liti A (2003) In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg Sports Traumatol Arthrosc 11(5):307–311PubMedCrossRef Cerulli G, Benoit DL, Lamontagne M, Caraffa A, Liti A (2003) In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg Sports Traumatol Arthrosc 11(5):307–311PubMedCrossRef
8.
go back to reference Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029PubMedCrossRef Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029PubMedCrossRef
9.
go back to reference Cortes N, Morrison S, Van Lunen BL, Onate JA (2012) Landing technique affects knee loading and position during athletic tasks. J Sci Med Sport 15(2):175–181PubMedCrossRef Cortes N, Morrison S, Van Lunen BL, Onate JA (2012) Landing technique affects knee loading and position during athletic tasks. J Sci Med Sport 15(2):175–181PubMedCrossRef
10.
go back to reference Cortes N, Onate J, Abrantes J, Gagen L, Dowling E, Van Lunen B (2007) Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings. J Appl Biomech 23(4):289–299PubMed Cortes N, Onate J, Abrantes J, Gagen L, Dowling E, Van Lunen B (2007) Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings. J Appl Biomech 23(4):289–299PubMed
11.
go back to reference DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483PubMedCrossRef DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483PubMedCrossRef
12.
go back to reference Hargrave MD, Carcia RC, Gansneder BM, Shultz SJ (2003) Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. J Athl Train 38(1):18–23PubMed Hargrave MD, Carcia RC, Gansneder BM, Shultz SJ (2003) Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. J Athl Train 38(1):18–23PubMed
13.
go back to reference Hashemi J, Breighner R, Chandrashekar N, Hardy DM, Chaudhari AM, Shultz SJ, Slauterbeck JR, Beynnon BD (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585PubMedCrossRef Hashemi J, Breighner R, Chandrashekar N, Hardy DM, Chaudhari AM, Shultz SJ, Slauterbeck JR, Beynnon BD (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585PubMedCrossRef
14.
go back to reference Hewett TE, Torg JS, Boden BP (2009) Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 43(6):417–422PubMedCrossRef Hewett TE, Torg JS, Boden BP (2009) Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 43(6):417–422PubMedCrossRef
15.
go back to reference Kulas AS, Hortobagyi T, Devita P (2010) The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing. J Athl Train 45(1):5–15PubMedCrossRef Kulas AS, Hortobagyi T, Devita P (2010) The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing. J Athl Train 45(1):5–15PubMedCrossRef
16.
go back to reference Laughlin WA, Weinhandl JT, Kernozek TW, Cobb SC, Keenan KG, O’Connor KM (2011) The effects of single-leg landing technique on ACL loading. J Biomech 44(10):1845–1851PubMedCrossRef Laughlin WA, Weinhandl JT, Kernozek TW, Cobb SC, Keenan KG, O’Connor KM (2011) The effects of single-leg landing technique on ACL loading. J Biomech 44(10):1845–1851PubMedCrossRef
17.
go back to reference Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J Biomech 32(4):395–400PubMedCrossRef Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J Biomech 32(4):395–400PubMedCrossRef
18.
go back to reference McLean SG, Andrish JT, van den Bogert AJ (2005) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 33(7):1106; author reply 1106–1107 McLean SG, Andrish JT, van den Bogert AJ (2005) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 33(7):1106; author reply 1106–1107
19.
go back to reference Meyer EG, Haut RC (2005) Excessive compression of the human tibio-femoral joint causes ACL rupture. J Biomech 38(11):2311–2316PubMedCrossRef Meyer EG, Haut RC (2005) Excessive compression of the human tibio-femoral joint causes ACL rupture. J Biomech 38(11):2311–2316PubMedCrossRef
20.
go back to reference Meyer EG, Haut RC (2008) Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech 41(16):3377–3383PubMedCrossRef Meyer EG, Haut RC (2008) Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech 41(16):3377–3383PubMedCrossRef
21.
go back to reference Miyasaka K, Daniel D, Stone M (1991) The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:43–48 Miyasaka K, Daniel D, Stone M (1991) The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:43–48
22.
go back to reference Nunley R, Wright D, Renner J, Yu B, Garrett WJ (2003) Gender comparison of patella tendon tibial shaft angle with weight bearing. Res Sports Med 11(3):173–185CrossRef Nunley R, Wright D, Renner J, Yu B, Garrett WJ (2003) Gender comparison of patella tendon tibial shaft angle with weight bearing. Res Sports Med 11(3):173–185CrossRef
23.
go back to reference Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012PubMedCrossRef Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012PubMedCrossRef
24.
go back to reference Pflum MA, Shelburne KB, Torry MR, Decker MJ, Pandy MG (2004) Model prediction of anterior cruciate ligament force during drop-landings. Med Sci Sports Exerc 36(11):1949–1958PubMedCrossRef Pflum MA, Shelburne KB, Torry MR, Decker MJ, Pandy MG (2004) Model prediction of anterior cruciate ligament force during drop-landings. Med Sci Sports Exerc 36(11):1949–1958PubMedCrossRef
25.
go back to reference Rainoldi A, Melchiorri G, Caruso I (2004) A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods 134:37–43PubMedCrossRef Rainoldi A, Melchiorri G, Caruso I (2004) A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods 134:37–43PubMedCrossRef
26.
go back to reference Self BP, Paine D (2001) Ankle biomechanics during four landing techniques. Med Sci Sports Exerc 33(8):1338–1344PubMedCrossRef Self BP, Paine D (2001) Ankle biomechanics during four landing techniques. Med Sci Sports Exerc 33(8):1338–1344PubMedCrossRef
28.
go back to reference Shimokochi Y, Meyer E (2011) Sagittal plane body positions influence tibial anterior shear force during single-leg landing. Br J Sports Med 45(4):373CrossRef Shimokochi Y, Meyer E (2011) Sagittal plane body positions influence tibial anterior shear force during single-leg landing. Br J Sports Med 45(4):373CrossRef
29.
go back to reference Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43(4):396–408PubMedCrossRef Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43(4):396–408PubMedCrossRef
30.
go back to reference Shimokochi Y, Yong Lee S, Shultz SJ, Schmitz RJ (2009) The relationships among sagittal-plane lower extremity moments: implications for landing strategy in anterior cruciate ligament injury prevention. J Athl Train 44(1):33–38PubMedCrossRef Shimokochi Y, Yong Lee S, Shultz SJ, Schmitz RJ (2009) The relationships among sagittal-plane lower extremity moments: implications for landing strategy in anterior cruciate ligament injury prevention. J Athl Train 44(1):33–38PubMedCrossRef
31.
go back to reference Shultz SJ, Schmitz RJ (2009) Effects of transverse and frontal plane knee laxity on hip and knee neuromechanics during drop landings. Am J Sports Med 37(9):1821–1830PubMedCrossRef Shultz SJ, Schmitz RJ (2009) Effects of transverse and frontal plane knee laxity on hip and knee neuromechanics during drop landings. Am J Sports Med 37(9):1821–1830PubMedCrossRef
32.
go back to reference Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15(3):207–213PubMedCrossRef Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15(3):207–213PubMedCrossRef
33.
go back to reference Tokuyama M, Ohashi H, Iwamoto H, Takaoka K, Okubo M (2005) Individuality and reproducibility in high-speed motion of volleyball spike jumps by phase-matching and averaging. J Biomech 38(10):2050–2057PubMedCrossRef Tokuyama M, Ohashi H, Iwamoto H, Takaoka K, Okubo M (2005) Individuality and reproducibility in high-speed motion of volleyball spike jumps by phase-matching and averaging. J Biomech 38(10):2050–2057PubMedCrossRef
34.
go back to reference Wall SJ, Rose DM, Sutter EG, Belkoff SM, Boden BP (2012) The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study. Am J Sports Med 40(3):568–573PubMedCrossRef Wall SJ, Rose DM, Sutter EG, Belkoff SM, Boden BP (2012) The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study. Am J Sports Med 40(3):568–573PubMedCrossRef
35.
go back to reference Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, New YorkCrossRef Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, New YorkCrossRef
36.
go back to reference Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130PubMedCrossRef Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130PubMedCrossRef
37.
go back to reference Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med 35(3):368–373PubMedCrossRef Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med 35(3):368–373PubMedCrossRef
Metadata
Title
Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury
Authors
Yohei Shimokochi
Jatin P. Ambegaonkar
Eric G. Meyer
Sae Yong Lee
Sandra J. Shultz
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 4/2013
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-012-2011-9

Other articles of this Issue 4/2013

Knee Surgery, Sports Traumatology, Arthroscopy 4/2013 Go to the issue