Skip to main content
Top
Published in: Metabolic Brain Disease 2/2018

01-04-2018 | Original Article

Changes in the brain antioxidant profile after chronic vanadium administration in mice

Authors: O. R. Folarin, O. A. Adaramoye, O. O. Akanni, J. O. Olopade

Published in: Metabolic Brain Disease | Issue 2/2018

Login to get access

Abstract

Vanadium is known to induce reactive oxygen species (ROS) in biological systems. Exposure to vanadium has been linked to neurological defects affecting the central nervous system (CNS) early in life and culminates later to neurodegeneration. This study was designed to evaluate the effects of chronic vanadium exposure on antioxidant profile in mice, and progressive changes after withdrawal from treatment. A total of 85 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three groups of vanadium exposed (3 mg/kg i.p at 3–18 months treatment), matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Vanadium exposure caused significant increases (p<0.05) in levels of malondialdehyde (MDA), hydrogen peroxide (H2O2) generation and nitric oxide with a concomitant decrease (p<0.05) in the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase and a decline in the level of reduced glutathione (GSH) after 6 months of vanadium exposure in the brain. This trend continued in all vanadium-exposed groups (9, 12, 15 and 18 months) relative to the matched controls. Withdrawal after 3 months of vanadium exposure significantly reversed oxidative stress in intoxicated mice from 9 to 15 months after vanadium withdrawal. We have shown that chronic administration of vanadium led to oxidative stress in the brain which is reversible only after a long period of vanadium withdrawal.
Literature
go back to reference Adebiyi OE, Obisesan AD, Olayemi FO, Olopade JO (2015) Protective effect of ethanolic extract of Grewia Carpinifolia leaves on vanadium induced toxicity. Alex J Vet Sci 47:1–6 Adebiyi OE, Obisesan AD, Olayemi FO, Olopade JO (2015) Protective effect of ethanolic extract of Grewia Carpinifolia leaves on vanadium induced toxicity. Alex J Vet Sci 47:1–6
go back to reference Adejuwon SA, Imosemi IO, Ebokaiwe PA, Omirinde JO, Adenipekun AA (2014) Protective role of Telfairia Occidentalis in irradiation-induced oxidative stress in rat brain. Int J Biol Chem Sci 3(8):843–853CrossRef Adejuwon SA, Imosemi IO, Ebokaiwe PA, Omirinde JO, Adenipekun AA (2014) Protective role of Telfairia Occidentalis in irradiation-induced oxidative stress in rat brain. Int J Biol Chem Sci 3(8):843–853CrossRef
go back to reference Amorim FAC, Welz B, Costa ACS, Lepri FG, Vale MGR, Ferreira SLC (2007) Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques. Talanta 72:349–359CrossRefPubMed Amorim FAC, Welz B, Costa ACS, Lepri FG, Vale MGR, Ferreira SLC (2007) Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques. Talanta 72:349–359CrossRefPubMed
go back to reference Avila-Costa MR, Zepeda-Rodríquez A, Antuna SB, Saldivar OL, Espejel-Maya G, Mussali-Galante P, Avila-Casado MC, Reyes-Olivera A, Anaya-Martinez V, Fortoul TI (2005) Ependymal epithelium disruption after vanadium pentoxide inhalation: a mice Experimental model. Neurosci Lett 381:21–25 Avila-Costa MR, Zepeda-Rodríquez A, Antuna SB, Saldivar OL, Espejel-Maya G, Mussali-Galante P, Avila-Casado MC, Reyes-Olivera A, Anaya-Martinez V, Fortoul TI (2005) Ependymal epithelium disruption after vanadium pentoxide inhalation: a mice Experimental model. Neurosci Lett 381:21–25
go back to reference Aydin A, Sayal A, Sayin S, Erdem O (2005) An investigation on the relationship between vanadium and antioxidative enzyme system in rats. Turk J Pharm Sci 2:17–24 Aydin A, Sayal A, Sayin S, Erdem O (2005) An investigation on the relationship between vanadium and antioxidative enzyme system in rats. Turk J Pharm Sci 2:17–24
go back to reference Azeez IA, Olopade F, Laperchia C, Andrioli A, Scambi I, Onwuka SK, Marina B, Olopade JO (2016) Regional myelin and axon damage and Neuroinflammation in the adult mouse brain after long-term postnatal vanadium exposure. J Neuropathol Exp Neurol 75:843–854CrossRefPubMed Azeez IA, Olopade F, Laperchia C, Andrioli A, Scambi I, Onwuka SK, Marina B, Olopade JO (2016) Regional myelin and axon damage and Neuroinflammation in the adult mouse brain after long-term postnatal vanadium exposure. J Neuropathol Exp Neurol 75:843–854CrossRefPubMed
go back to reference Bast A, Barr PR (1997) The antioxidant/prooxidant balance in neurodegeneration. In: Bar PR, Beal MF (eds) Neuroprotection in CNS diseases. Marcel Dekker, New York, pp 147–159 Bast A, Barr PR (1997) The antioxidant/prooxidant balance in neurodegeneration. In: Bar PR, Beal MF (eds) Neuroprotection in CNS diseases. Marcel Dekker, New York, pp 147–159
go back to reference Brendt DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res J 31:577–596CrossRef Brendt DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res J 31:577–596CrossRef
go back to reference Briner W (2014) The Alchemist’s approach to metal poisoning: transforming the metal burden. Toxics 2:364–376CrossRef Briner W (2014) The Alchemist’s approach to metal poisoning: transforming the metal burden. Toxics 2:364–376CrossRef
go back to reference Cairney S, Maruff P, Burns CB, Currie J, Currie BJ (2005) Neurological and cognitive recovery following abstinence from petrol sniffing. J Neuropsychopharmacology 30:1019–1027CrossRef Cairney S, Maruff P, Burns CB, Currie J, Currie BJ (2005) Neurological and cognitive recovery following abstinence from petrol sniffing. J Neuropsychopharmacology 30:1019–1027CrossRef
go back to reference Cam MC, Li WM, McNeill JH (1997) Partial preservation of pancreatic beta cells by vanadium: evidence for long-term amelioration of diabetes. Metabolism 46:769–778CrossRefPubMed Cam MC, Li WM, McNeill JH (1997) Partial preservation of pancreatic beta cells by vanadium: evidence for long-term amelioration of diabetes. Metabolism 46:769–778CrossRefPubMed
go back to reference Cochrane AL, Kett MM, Samuel CS, Campanale NV, Anderson WP (2005). Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol 16: 3623–3630. Cochrane AL, Kett MM, Samuel CS, Campanale NV, Anderson WP (2005). Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol 16: 3623–3630.
go back to reference Corcoran GB, Fix L, Jones DP, Moslen MT, Nicotera P, Oberhaimmer FZ, Buttyan R (1994) Apoptosis: molecular control point in toxicity. Toxicol Appl Phamarcol J 128:169–181CrossRef Corcoran GB, Fix L, Jones DP, Moslen MT, Nicotera P, Oberhaimmer FZ, Buttyan R (1994) Apoptosis: molecular control point in toxicity. Toxicol Appl Phamarcol J 128:169–181CrossRef
go back to reference Ebokaiwe AP, Adedara IA, Owoeye O, Farombi EO (2013) Neurotoxicity of Nigerian bonny light crude oil in rats. Drug Chem Toxicol 36:187–195CrossRefPubMed Ebokaiwe AP, Adedara IA, Owoeye O, Farombi EO (2013) Neurotoxicity of Nigerian bonny light crude oil in rats. Drug Chem Toxicol 36:187–195CrossRefPubMed
go back to reference Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metal and oxidative stress part 1: mechanism involved in metal induced oxidative damage. Curr Top Med Chem J 6:529–539CrossRef Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metal and oxidative stress part 1: mechanism involved in metal induced oxidative damage. Curr Top Med Chem J 6:529–539CrossRef
go back to reference Farombi EO, Tahnteng JG, Agboola AO, Nwankwo JO, Emerole GO (2000) Chemoprevention of 2-acetylaminofluoreneinduced hepatotoxicity and lipid peroxidation in rats by kolaviron a Garcinia Kola seed extract. J Food Chem Toxicol 38:535–541CrossRef Farombi EO, Tahnteng JG, Agboola AO, Nwankwo JO, Emerole GO (2000) Chemoprevention of 2-acetylaminofluoreneinduced hepatotoxicity and lipid peroxidation in rats by kolaviron a Garcinia Kola seed extract. J Food Chem Toxicol 38:535–541CrossRef
go back to reference Farombi EO, Adedara IA, Ebokaiwe AP, Teberen R, Ehwerhemuepha T (2010) Nigerian bonny light crude oil disrupts antioxidant systems in the testes and sperm of rats. Arch Environ Contam Toxicol 59:166–174CrossRefPubMed Farombi EO, Adedara IA, Ebokaiwe AP, Teberen R, Ehwerhemuepha T (2010) Nigerian bonny light crude oil disrupts antioxidant systems in the testes and sperm of rats. Arch Environ Contam Toxicol 59:166–174CrossRefPubMed
go back to reference Folarin O, Olopade F, Onwuka S, Olopade J (2016) Memory deficit recovery after chronic vanadium exposure in mice. J Oxidative Med Cell Longev (Spec Issue) 2016:7 Folarin O, Olopade F, Onwuka S, Olopade J (2016) Memory deficit recovery after chronic vanadium exposure in mice. J Oxidative Med Cell Longev (Spec Issue) 2016:7
go back to reference Fortoul TI, Rodriguez-Lara V, González-Villalva A et al (2014) Inhalation of vanadium pentoxide and its toxic effects in a mouse model. Inorg Chim Acta 420:8–15CrossRef Fortoul TI, Rodriguez-Lara V, González-Villalva A et al (2014) Inhalation of vanadium pentoxide and its toxic effects in a mouse model. Inorg Chim Acta 420:8–15CrossRef
go back to reference Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal J 15:1583–1606CrossRef Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal J 15:1583–1606CrossRef
go back to reference Garcia GB, Quiroga AD, Sturtz N, Martinez AL, Biancardi ME (2004) Morphological alterations of central nervous system (CNS) myelin in vanadium (V)-exposed adult rats. J Drug Chem Toxicol 27:281–293CrossRef Garcia GB, Quiroga AD, Sturtz N, Martinez AL, Biancardi ME (2004) Morphological alterations of central nervous system (CNS) myelin in vanadium (V)-exposed adult rats. J Drug Chem Toxicol 27:281–293CrossRef
go back to reference Garcia GB, Biancardi ME, Quiroga AD (2005) Vanadium (V)-induced neurotoxicity in the rat central nervous system: a Histo-Immunohistochemical study. J Drug Chem Toxicol 28:329–344CrossRef Garcia GB, Biancardi ME, Quiroga AD (2005) Vanadium (V)-induced neurotoxicity in the rat central nervous system: a Histo-Immunohistochemical study. J Drug Chem Toxicol 28:329–344CrossRef
go back to reference Giergiel M, Kankofer M (2015) Age and sex-related changes in superoxide dismutase activity in bovine tissues. Czech J Anim Sci 60(8):367–374CrossRef Giergiel M, Kankofer M (2015) Age and sex-related changes in superoxide dismutase activity in bovine tissues. Czech J Anim Sci 60(8):367–374CrossRef
go back to reference Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (•OH). Chem Rev 155:13051–13092CrossRef Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (OH). Chem Rev 155:13051–13092CrossRef
go back to reference Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JK, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem J 126:131–136CrossRef Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JK, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem J 126:131–136CrossRef
go back to reference Groot H, Littauer A (1989) Hypoxia, reactive oxygen and cell injury. Free Radic Biol Med J 6:541–551CrossRef Groot H, Littauer A (1989) Hypoxia, reactive oxygen and cell injury. Free Radic Biol Med J 6:541–551CrossRef
go back to reference Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione-Stransferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMed Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione-Stransferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMed
go back to reference Hosseini M, Seyedrazi N, Shahraki J, Pourahmad J (2012) Vanadium induces liver toxicity through reductive activation by glutathione and mitochondrial dysfunction. Adv Biosci Biotechnol 3:1096–1103CrossRef Hosseini M, Seyedrazi N, Shahraki J, Pourahmad J (2012) Vanadium induces liver toxicity through reductive activation by glutathione and mitochondrial dysfunction. Adv Biosci Biotechnol 3:1096–1103CrossRef
go back to reference Hubatsch I, Ridderstrom M, Mannervik B (1998) Human glutathione transferase A4–4: An alpha class enzyme with high catalytic efficience in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 15:175–179CrossRef Hubatsch I, Ridderstrom M, Mannervik B (1998) Human glutathione transferase A4–4: An alpha class enzyme with high catalytic efficience in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 15:175–179CrossRef
go back to reference Ibrahim D, Froberg B, Wolf A, Rusyniak DE (2006) Heavy metal poisoning: clinical presentations and pathophysiology. J Clin Lab Med 26:67–97CrossRef Ibrahim D, Froberg B, Wolf A, Rusyniak DE (2006) Heavy metal poisoning: clinical presentations and pathophysiology. J Clin Lab Med 26:67–97CrossRef
go back to reference Igado OO, Olopade JO, Adesida A, Aina OO, Farombi EO (2012) Morphological and biochemical investigation into the possible neuroprotective effects of kolaviron (Garcinia kola bioflavonoid) on the brains of rats exposed to vanadium. Drug Chem Toxicol 35:370–380CrossRef Igado OO, Olopade JO, Adesida A, Aina OO, Farombi EO (2012) Morphological and biochemical investigation into the possible neuroprotective effects of kolaviron (Garcinia kola bioflavonoid) on the brains of rats exposed to vanadium. Drug Chem Toxicol 35:370–380CrossRef
go back to reference Jollow DJ, Mitchell JR, Zamppaglione Z, Gillette JR (1974) Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3, 4- bromobenzene oxide as the hepatotoxic metabolites. J Pharmacol 11:151–157CrossRef Jollow DJ, Mitchell JR, Zamppaglione Z, Gillette JR (1974) Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3, 4- bromobenzene oxide as the hepatotoxic metabolites. J Pharmacol 11:151–157CrossRef
go back to reference Kamal EM, Tamara S, Shaban D, Bauyrzhan U (2011) Combined effect of vanadium and nickel on lipidperoxidation and selected parameters of antioxidantsystem in liver and kidney of male rat. Afr J Biotechnology 10:18319-18325 Kamal EM, Tamara S, Shaban D, Bauyrzhan U (2011) Combined effect of vanadium and nickel on lipidperoxidation and selected parameters of antioxidantsystem in liver and kidney of male rat. Afr J Biotechnology 10:18319-18325
go back to reference Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2015) Vanadium compounds as pro-inflammatory agents: effects on cyclooxygenases. Science 16:12648–12668 Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2015) Vanadium compounds as pro-inflammatory agents: effects on cyclooxygenases. Science 16:12648–12668
go back to reference Mahmoud KE, Shalahmetova T, Deraz S, Umbayev B (2011) Combined effect of vanadium and nickel on lipid peroxidation and selected parameters of antioxidant system in liver and kidney of male rat. Afr J Biotechnol 79:18319–18325 Mahmoud KE, Shalahmetova T, Deraz S, Umbayev B (2011) Combined effect of vanadium and nickel on lipid peroxidation and selected parameters of antioxidant system in liver and kidney of male rat. Afr J Biotechnol 79:18319–18325
go back to reference Margret ES (2013) Chelation: harnessing and enhancing heavy metal detoxification. A Rev Sci World J 2013:219840 Margret ES (2013) Chelation: harnessing and enhancing heavy metal detoxification. A Rev Sci World J 2013:219840
go back to reference Marouane W, Soussi A, Murat J, Bezzine S, Feki A (2011) The protective effect of Malva Sylvestris on rat kidney damaged by vanadium. Lipids Health Dis 10:65CrossRefPubMedPubMedCentral Marouane W, Soussi A, Murat J, Bezzine S, Feki A (2011) The protective effect of Malva Sylvestris on rat kidney damaged by vanadium. Lipids Health Dis 10:65CrossRefPubMedPubMedCentral
go back to reference Melo A, Monteiro L, Lima LMF, de Oliveira DM, De Cerqueira MD, El-Bachá RS (2011) Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. J Oxidative Med Cell Longev 2011:14 Melo A, Monteiro L, Lima LMF, de Oliveira DM, De Cerqueira MD, El-Bachá RS (2011) Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. J Oxidative Med Cell Longev 2011:14
go back to reference Meng Q, Wong YT, Chen J, Ruan R (2007) Age-related changes in mitochondrial function and antioxidative enzyme activity in Fischer 344 rats. Mech Ageing Dev 128:286–292CrossRefPubMed Meng Q, Wong YT, Chen J, Ruan R (2007) Age-related changes in mitochondrial function and antioxidative enzyme activity in Fischer 344 rats. Mech Ageing Dev 128:286–292CrossRefPubMed
go back to reference Misra H, Fridovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175 Misra H, Fridovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175
go back to reference Monleau M, De M’,eo M, Paquet F, Chazel V, Dum’enil G, Donnadieu-Claraz M (2006) Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats. J Toxicol Sci 89:287–295 Monleau M, De M’,eo M, Paquet F, Chazel V, Dum’enil G, Donnadieu-Claraz M (2006) Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats. J Toxicol Sci 89:287–295
go back to reference Moskalyk RR, Alfantazi AM (2003) Processing of vanadium: a review. Miner Eng 16:793–805CrossRef Moskalyk RR, Alfantazi AM (2003) Processing of vanadium: a review. Miner Eng 16:793–805CrossRef
go back to reference Navarro A, Sanchez Del Pino MJ, Gomez C, Peralta JL, Boveris A (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in ageing mice. Am J Physiol Regul Integr Comp Physiol 282:985–992CrossRef Navarro A, Sanchez Del Pino MJ, Gomez C, Peralta JL, Boveris A (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in ageing mice. Am J Physiol Regul Integr Comp Physiol 282:985–992CrossRef
go back to reference Ngwa HA, Kanthasamy A, Anantharam V, Witte CST, Houk R, Kanthasamy AG (2009) Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: relevance to etiopathogenesis of Parkinson's disease. J Toxicol Appl Pharmacol 240:273–285CrossRef Ngwa HA, Kanthasamy A, Anantharam V, Witte CST, Houk R, Kanthasamy AG (2009) Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: relevance to etiopathogenesis of Parkinson's disease. J Toxicol Appl Pharmacol 240:273–285CrossRef
go back to reference Olopade JO, Connor JR (2010) Vanadium and neurotoxicity: a review. Curr Top Toxicol 7:33–39 Olopade JO, Connor JR (2010) Vanadium and neurotoxicity: a review. Curr Top Toxicol 7:33–39
go back to reference Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Biochemical role as a component of glutathione peroxidase. Sci J 179:588–590CrossRef Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Biochemical role as a component of glutathione peroxidase. Sci J 179:588–590CrossRef
go back to reference Santos R, de Ruiz Almodóvar C, Bulteau A, Gomes CM (2013) Neurodegeneration, neurogenesis, and oxidative stress. Adv Biosci Biotechnol J 3:1096–1103 Santos R, de Ruiz Almodóvar C, Bulteau A, Gomes CM (2013) Neurodegeneration, neurogenesis, and oxidative stress. Adv Biosci Biotechnol J 3:1096–1103
go back to reference Sardar K, Ali S, Hameed S, Afzal S, Fatima S, Shakoor MB, Bharwana SA, Tauqeer HM (2013) Heavy metals contamination and what are the impacts on living organisms. Greener J Environ Manag Public Saf 2:172–179CrossRef Sardar K, Ali S, Hameed S, Afzal S, Fatima S, Shakoor MB, Bharwana SA, Tauqeer HM (2013) Heavy metals contamination and what are the impacts on living organisms. Greener J Environ Manag Public Saf 2:172–179CrossRef
go back to reference Sasi MM, Haider SS, el-Fakhri M, Ghwarsha KM (1994) Microchromatographic analysis of lipids, protein, and occurrence of lipid peroxidation in various brain areas of vanadium exposed rats: a possible mechanism of vanadium neurotoxicity. Neurotoxicology 15:413–420 Sasi MM, Haider SS, el-Fakhri M, Ghwarsha KM (1994) Microchromatographic analysis of lipids, protein, and occurrence of lipid peroxidation in various brain areas of vanadium exposed rats: a possible mechanism of vanadium neurotoxicity. Neurotoxicology 15:413–420
go back to reference Ścibior A, Gołębiowska D, Niedźwiecka I (2013) Magnesium can protect against vanadium-induced lipid peroxidation in the hepatic tissue. J Oxidative Med Cell Longev. doi:10.1155/2013/802734 Ścibior A, Gołębiowska D, Niedźwiecka I (2013) Magnesium can protect against vanadium-induced lipid peroxidation in the hepatic tissue. J Oxidative Med Cell Longev. doi:10.​1155/​2013/​802734
go back to reference Sears ME (2013) Chelation: harnessing and enhancing heavy metal detoxification—a review. Sci World J 2013:13CrossRef Sears ME (2013) Chelation: harnessing and enhancing heavy metal detoxification—a review. Sci World J 2013:13CrossRef
go back to reference Sobocanec S, Balog T, Sverko V (2003) Sex-dependent antioxidant enzyme activities and lipid peroxidation in ageing mouse brain. Free Radic Res 37:743–748CrossRefPubMed Sobocanec S, Balog T, Sverko V (2003) Sex-dependent antioxidant enzyme activities and lipid peroxidation in ageing mouse brain. Free Radic Res 37:743–748CrossRefPubMed
go back to reference Sohal RS, Arnold L, Orr WC (1990) Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/ NADP+ and NADH/NAD+ in Drosophila Melanogaster. Mech Ageing Dev 56:223–235CrossRefPubMed Sohal RS, Arnold L, Orr WC (1990) Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/ NADP+ and NADH/NAD+ in Drosophila Melanogaster. Mech Ageing Dev 56:223–235CrossRefPubMed
go back to reference Stohs SJ, Ragchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(1999):321–336CrossRefPubMed Stohs SJ, Ragchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(1999):321–336CrossRefPubMed
go back to reference Todorich B, Olopade JO, Surguladze N, Zhang X, Neely E, Connor JR (2011) The mechanism of vanadium-mediated developmental Hypomyelination is related to destruction of oligodendrocyte progenitors through a relationship with ferritin and iron. Neurotox Res J 19:361–373CrossRef Todorich B, Olopade JO, Surguladze N, Zhang X, Neely E, Connor JR (2011) The mechanism of vanadium-mediated developmental Hypomyelination is related to destruction of oligodendrocyte progenitors through a relationship with ferritin and iron. Neurotox Res J 19:361–373CrossRef
go back to reference Uboh FE, Ufot SU, Eyong EU (2013) Comparative effect of withdrawal from exposure on gasoline and diesel induced nephrotoxicity in male albino Wistar rats. J Clin Toxicol 3:170 Uboh FE, Ufot SU, Eyong EU (2013) Comparative effect of withdrawal from exposure on gasoline and diesel induced nephrotoxicity in male albino Wistar rats. J Clin Toxicol 3:170
go back to reference Valko M, Rhodes CJ, Moncola J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. J Chem Biol Interact 160:1–40CrossRef Valko M, Rhodes CJ, Moncola J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. J Chem Biol Interact 160:1–40CrossRef
go back to reference Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefPubMed Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefPubMed
go back to reference Wolff SP (1994) Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol J 233:182–189CrossRef Wolff SP (1994) Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol J 233:182–189CrossRef
go back to reference Wozniak A, Drewa G, Wozniak B, Schachtschabel DO (2004) Activity of antioxidant enzymes and concentration of lipid peroxidation products in selected tissues of mice of different ages, both healthy and melanoma-bearing. Z Gerontol Geriatr 37:184–189CrossRefPubMed Wozniak A, Drewa G, Wozniak B, Schachtschabel DO (2004) Activity of antioxidant enzymes and concentration of lipid peroxidation products in selected tissues of mice of different ages, both healthy and melanoma-bearing. Z Gerontol Geriatr 37:184–189CrossRefPubMed
Metadata
Title
Changes in the brain antioxidant profile after chronic vanadium administration in mice
Authors
O. R. Folarin
O. A. Adaramoye
O. O. Akanni
J. O. Olopade
Publication date
01-04-2018
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 2/2018
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-017-0070-9

Other articles of this Issue 2/2018

Metabolic Brain Disease 2/2018 Go to the issue