Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2011

Open Access 01-12-2011 | Research

Changes in joint coupling and variability during walking following tibialis posterior muscle fatigue

Authors: Reed Ferber, Michael B Pohl

Published in: Journal of Foot and Ankle Research | Issue 1/2011

Login to get access

Abstract

Background

The tibialis posterior muscle is believed to play a key role in controlling foot mechanics during the stance phase of gait. However, an experiment involving localised tibialis posterior muscle fatigue, and analysis of discrete rearfoot and forefoot kinematic variables, indicated that reduced force output of the tibialis posterior muscle did not alter rearfoot and forefoot motion during gait. Thus, to better understand how muscle fatigue affects foot kinematics and injury potential, the purpose of this study was to reanalyze the data and investigate shank, rearfoot and forefoot joint coupling and coupling variability during walking.

Methods

Twenty-nine participants underwent an exercise fatigue protocol aimed at reducing the force output of tibialis posterior. An eight camera motion analysis system was used to evaluate 3 D shank and foot joint coupling and coupling variability during treadmill walking both pre- and post-fatigue.

Results

The fatigue protocol was successful in reducing the maximal isometric force by over 30% and a concomitant increase in coupling motion of the shank in the transverse plane and forefoot in the sagittal and transverse planes relative to frontal plane motion of the rearfoot. In addition, an increase in joint coupling variability was measured between the shank and rearfoot and between the rearfoot and forefoot during the fatigue condition.

Conclusions

The reduced function of the tibialis posterior muscle following fatigue resulted in a disruption in typical shank and foot joint coupling patterns and an increased variability in joint coupling. These results could help explain tibialis posterior injury aetiology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferber R, Hreljac A, Kendall KD: Suspected mechanisms in the cause of overuse running injuries: a clinical review. Sports Health: A Multidisciplinary Approach. 2009, 1 (3): 242-246. 10.1177/1941738109334272.CrossRef Ferber R, Hreljac A, Kendall KD: Suspected mechanisms in the cause of overuse running injuries: a clinical review. Sports Health: A Multidisciplinary Approach. 2009, 1 (3): 242-246. 10.1177/1941738109334272.CrossRef
2.
go back to reference Stanish WD: Overuse injuries in athletes: A perspective. Med Sci Sports Exerc. 1984, 16 (1): 1-7. 10.1249/00005768-198401000-00002.CrossRefPubMed Stanish WD: Overuse injuries in athletes: A perspective. Med Sci Sports Exerc. 1984, 16 (1): 1-7. 10.1249/00005768-198401000-00002.CrossRefPubMed
3.
go back to reference Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD: A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002, 36 (2): 95-101. 10.1136/bjsm.36.2.95.CrossRefPubMedPubMedCentral Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD: A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002, 36 (2): 95-101. 10.1136/bjsm.36.2.95.CrossRefPubMedPubMedCentral
4.
go back to reference van Mechelen W: Can running injuries be effectively prevented?. Sports Med. 1995, 19 (3): 161-165. 10.2165/00007256-199519030-00001.CrossRefPubMed van Mechelen W: Can running injuries be effectively prevented?. Sports Med. 1995, 19 (3): 161-165. 10.2165/00007256-199519030-00001.CrossRefPubMed
5.
go back to reference Dierks TA, Davis I: Discrete and continuous joint coupling relationships in uninjured recreational runners. Clin Biomech. 2009, 22 (5): 581-591. 10.1016/j.clinbiomech.2007.01.012.CrossRef Dierks TA, Davis I: Discrete and continuous joint coupling relationships in uninjured recreational runners. Clin Biomech. 2009, 22 (5): 581-591. 10.1016/j.clinbiomech.2007.01.012.CrossRef
6.
go back to reference Ireland ML, Willson JD, Ballantyne BT, Davis IM: Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther. 2003, 33 (11): 671-676.CrossRefPubMed Ireland ML, Willson JD, Ballantyne BT, Davis IM: Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther. 2003, 33 (11): 671-676.CrossRefPubMed
7.
go back to reference Kendall KD, Ferber R, Louro M: Proximal and distal clinical measures related to patellofemoral pain syndrome in runners. J Ath Training. 2007, 42 (2): S114- Kendall KD, Ferber R, Louro M: Proximal and distal clinical measures related to patellofemoral pain syndrome in runners. J Ath Training. 2007, 42 (2): S114-
8.
go back to reference Snyder KR, Earl JE, O'Connor KM, Ebersole KT: Resistance training is accompanied by increases in hip strength and changes in lower extremity biomechanics during running. Clin Biomech. 2009, 24 (1): 26-34. 10.1016/j.clinbiomech.2008.09.009.CrossRef Snyder KR, Earl JE, O'Connor KM, Ebersole KT: Resistance training is accompanied by increases in hip strength and changes in lower extremity biomechanics during running. Clin Biomech. 2009, 24 (1): 26-34. 10.1016/j.clinbiomech.2008.09.009.CrossRef
9.
go back to reference Thijs Y, Van Tiggelen D, Roosen P, De Clercq D, Witvrouw E: A prospective study on gait-related intrinsic risk factors for patellofemoral pain. Clin J Sport Med. 2007, 17 (6): 437-445. 10.1097/JSM.0b013e31815ac44f.CrossRefPubMed Thijs Y, Van Tiggelen D, Roosen P, De Clercq D, Witvrouw E: A prospective study on gait-related intrinsic risk factors for patellofemoral pain. Clin J Sport Med. 2007, 17 (6): 437-445. 10.1097/JSM.0b013e31815ac44f.CrossRefPubMed
10.
go back to reference Levinger P, Gilleard W: Tibia and rearfoot motion and ground reaction forces in subjects with patellofemoral pain syndrome during walking. Gait Posture. 2007, 25 (1): 2-8. 10.1016/j.gaitpost.2005.12.015.CrossRefPubMed Levinger P, Gilleard W: Tibia and rearfoot motion and ground reaction forces in subjects with patellofemoral pain syndrome during walking. Gait Posture. 2007, 25 (1): 2-8. 10.1016/j.gaitpost.2005.12.015.CrossRefPubMed
11.
go back to reference Messier SP, Pittala KA: Etiologic factors associated with selected running injuries. Med Sci Sports Exerc. 1988, 20 (5): 501-505.CrossRefPubMed Messier SP, Pittala KA: Etiologic factors associated with selected running injuries. Med Sci Sports Exerc. 1988, 20 (5): 501-505.CrossRefPubMed
12.
go back to reference Pohl MB, Mullineaux DR, Milner CE, Hamill J, Davis IS: Biomechanical predictors of retrospective tibial stress fractures in runners. J Biomech. 2008, 41 (6): 1160-1165. 10.1016/j.jbiomech.2008.02.001.CrossRefPubMed Pohl MB, Mullineaux DR, Milner CE, Hamill J, Davis IS: Biomechanical predictors of retrospective tibial stress fractures in runners. J Biomech. 2008, 41 (6): 1160-1165. 10.1016/j.jbiomech.2008.02.001.CrossRefPubMed
13.
go back to reference Willems TM, De Clercq D, Delbaere K, Vanderstraeten G, De Cock A, Witvrouw E: A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006, 23 (1): 91-98. 10.1016/j.gaitpost.2004.12.004.CrossRefPubMed Willems TM, De Clercq D, Delbaere K, Vanderstraeten G, De Cock A, Witvrouw E: A prospective study of gait related risk factors for exercise-related lower leg pain. Gait Posture. 2006, 23 (1): 91-98. 10.1016/j.gaitpost.2004.12.004.CrossRefPubMed
14.
go back to reference O'Connor KM, Hamill J: The role of selected extrinsic foot muscles during running. Clin Biomech. 2004, 19 (1): 71-77.CrossRef O'Connor KM, Hamill J: The role of selected extrinsic foot muscles during running. Clin Biomech. 2004, 19 (1): 71-77.CrossRef
15.
go back to reference Pohl MB, Rabbito M, Ferber R: The role of tibialis posterior fatigue on foot kinematics during walking. J Foot Ankle Res. 2010, 3 (6): 1-8. Pohl MB, Rabbito M, Ferber R: The role of tibialis posterior fatigue on foot kinematics during walking. J Foot Ankle Res. 2010, 3 (6): 1-8.
16.
go back to reference Kitaoka HB, Luo ZP, An KN: Effect of posterior tibial tendon on the arch of the foot during simulated weightbearing: biomechanical analysis. Foot Ankle Int. 1997, 18 (1): 43-46.CrossRefPubMed Kitaoka HB, Luo ZP, An KN: Effect of posterior tibial tendon on the arch of the foot during simulated weightbearing: biomechanical analysis. Foot Ankle Int. 1997, 18 (1): 43-46.CrossRefPubMed
17.
go back to reference Thordarson DB, Schmotzer H, Chon J, Peters J: Dynamic support of the human longitudinal arch: a biomechanical evaluation. Clin Orthop Relat Res. 1995, 316: 165-172.PubMed Thordarson DB, Schmotzer H, Chon J, Peters J: Dynamic support of the human longitudinal arch: a biomechanical evaluation. Clin Orthop Relat Res. 1995, 316: 165-172.PubMed
18.
go back to reference Moore KL, Dalley AF: Clinically Oriented Anatomy. 2005, Baltimore MD: Lippincott Williams & Wilkins, 5 Moore KL, Dalley AF: Clinically Oriented Anatomy. 2005, Baltimore MD: Lippincott Williams & Wilkins, 5
19.
go back to reference Ness ME, Long J, Marks R, Harris G: Foot and ankle kinematics in patients with posterior tibial tendon dysfunction. Gait Posture. 2008, 27 (2): 331-339. 10.1016/j.gaitpost.2007.04.014.CrossRefPubMed Ness ME, Long J, Marks R, Harris G: Foot and ankle kinematics in patients with posterior tibial tendon dysfunction. Gait Posture. 2008, 27 (2): 331-339. 10.1016/j.gaitpost.2007.04.014.CrossRefPubMed
20.
go back to reference Rattanaprasert U, Smith R, Sullivan M, Gilleard W: Three-dimensional kinematics of the forefoot, rearfoot, and leg without the function of tibialis posterior in comparison with normals during stance phase of walking. Clin Biomech. 1999, 14 (1): 14-23. 10.1016/S0268-0033(98)00034-5.CrossRef Rattanaprasert U, Smith R, Sullivan M, Gilleard W: Three-dimensional kinematics of the forefoot, rearfoot, and leg without the function of tibialis posterior in comparison with normals during stance phase of walking. Clin Biomech. 1999, 14 (1): 14-23. 10.1016/S0268-0033(98)00034-5.CrossRef
21.
go back to reference Tome J, Nawoczenski DA, Flemister A, Houck J: Comparison of foot kinematics between subjects with posterior tibialis tendon dysfunction and healthy controls. J Orthop Sports Phys Ther. 2006, 36 (9): 635-644.CrossRefPubMed Tome J, Nawoczenski DA, Flemister A, Houck J: Comparison of foot kinematics between subjects with posterior tibialis tendon dysfunction and healthy controls. J Orthop Sports Phys Ther. 2006, 36 (9): 635-644.CrossRefPubMed
22.
go back to reference Christina KA, White SC, Gilchrist LA: Effect of localised muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum Mov Sci. 2001, 20 (3): 257-276. 10.1016/S0167-9457(01)00048-3.CrossRefPubMed Christina KA, White SC, Gilchrist LA: Effect of localised muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum Mov Sci. 2001, 20 (3): 257-276. 10.1016/S0167-9457(01)00048-3.CrossRefPubMed
23.
go back to reference Kulig K, Burnfield JM, Requejo SM, Sperry M, Terk M: Selective activation of tibialis posterior: evaluation by magnetic resonance imaging. Med Sci Sports Exerc. 2004, 36 (5): 862-867. 10.1249/01.MSS.0000126385.12402.2E.CrossRefPubMed Kulig K, Burnfield JM, Requejo SM, Sperry M, Terk M: Selective activation of tibialis posterior: evaluation by magnetic resonance imaging. Med Sci Sports Exerc. 2004, 36 (5): 862-867. 10.1249/01.MSS.0000126385.12402.2E.CrossRefPubMed
24.
go back to reference Hamill J, van Emmerik RE, Heiderscheit BC, Li L: A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999, 14 (5): 297-308. 10.1016/S0268-0033(98)90092-4.CrossRef Hamill J, van Emmerik RE, Heiderscheit BC, Li L: A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999, 14 (5): 297-308. 10.1016/S0268-0033(98)90092-4.CrossRef
25.
go back to reference DeLeo AT, Dierks TA, Ferber R, Davis IS: Lower extremity joint coupling during running: a current update. Clin Biomech. 2004, 19 (10): 983-991. 10.1016/j.clinbiomech.2004.07.005.CrossRef DeLeo AT, Dierks TA, Ferber R, Davis IS: Lower extremity joint coupling during running: a current update. Clin Biomech. 2004, 19 (10): 983-991. 10.1016/j.clinbiomech.2004.07.005.CrossRef
26.
go back to reference Ferber R, Davis IM, Williams DS: Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. J Biomech. 2005, 38 (3): 477-483. 10.1016/j.jbiomech.2004.04.019.CrossRefPubMed Ferber R, Davis IM, Williams DS: Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. J Biomech. 2005, 38 (3): 477-483. 10.1016/j.jbiomech.2004.04.019.CrossRefPubMed
27.
go back to reference Stergiou N, Scholten SD, Jensen JL, Blanke D: Intralimb coordination following obstable clearance during running: the effect of obstacle height. Gait Posture. 2001, 13 (3): 210-220. 10.1016/S0966-6362(00)00101-6.CrossRefPubMed Stergiou N, Scholten SD, Jensen JL, Blanke D: Intralimb coordination following obstable clearance during running: the effect of obstacle height. Gait Posture. 2001, 13 (3): 210-220. 10.1016/S0966-6362(00)00101-6.CrossRefPubMed
28.
go back to reference Miller RH, Meardon SA, Derrick TR, Gillette JC: Continuous relative phase variability during an exhaustive run in runner with a history of iliotibial band syndrome. J Appl Biomech. 2008, 24 (3): 262-270.PubMed Miller RH, Meardon SA, Derrick TR, Gillette JC: Continuous relative phase variability during an exhaustive run in runner with a history of iliotibial band syndrome. J Appl Biomech. 2008, 24 (3): 262-270.PubMed
29.
go back to reference Pollard CD, Heiderscheit BC, van Emmerik RE, Hamill J: Gender differences in lower extremity coupling variability during an unanticipated cutting maneuver. J Appl Biomech. 2005, 21 (2): 143-152.PubMed Pollard CD, Heiderscheit BC, van Emmerik RE, Hamill J: Gender differences in lower extremity coupling variability during an unanticipated cutting maneuver. J Appl Biomech. 2005, 21 (2): 143-152.PubMed
30.
go back to reference Pohl MB, Messenger N, Buckley JG: Changes in foot and lower limb coupling due to systematic variations in step width. Clin Biomech. 2006, 21 (2): 175-183. 10.1016/j.clinbiomech.2005.09.005.CrossRef Pohl MB, Messenger N, Buckley JG: Changes in foot and lower limb coupling due to systematic variations in step width. Clin Biomech. 2006, 21 (2): 175-183. 10.1016/j.clinbiomech.2005.09.005.CrossRef
31.
go back to reference Pohl MB, Messenger N, Buckley JG: Forefoot, rearfoot and shank coupling: effect of speed and mode of gait. Gait Posture. 2007, 25 (2): 295-302. 10.1016/j.gaitpost.2006.04.012.CrossRefPubMed Pohl MB, Messenger N, Buckley JG: Forefoot, rearfoot and shank coupling: effect of speed and mode of gait. Gait Posture. 2007, 25 (2): 295-302. 10.1016/j.gaitpost.2006.04.012.CrossRefPubMed
32.
go back to reference Zeni JA, Richards JG, Higginson JS: Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008, 27 (4): 710-714. 10.1016/j.gaitpost.2007.07.007.CrossRefPubMed Zeni JA, Richards JG, Higginson JS: Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008, 27 (4): 710-714. 10.1016/j.gaitpost.2007.07.007.CrossRefPubMed
33.
go back to reference Heiderscheit BC, Hamill J, Van Emmerik RE: Q-angle influences on the variability of lower extremity coordination during running. Med Sci Sports Exerc. 1999, 31 (9): 1313-1319. 10.1097/00005768-199909000-00013.CrossRefPubMed Heiderscheit BC, Hamill J, Van Emmerik RE: Q-angle influences on the variability of lower extremity coordination during running. Med Sci Sports Exerc. 1999, 31 (9): 1313-1319. 10.1097/00005768-199909000-00013.CrossRefPubMed
34.
go back to reference Cheung RTH, Ng GYF: Efficacy of motion control shoes for reducing excessive rearfoot motion in fatigued runners. Phys Ther Sport. 2007, 8: 75-81. 10.1016/j.ptsp.2006.12.002.CrossRef Cheung RTH, Ng GYF: Efficacy of motion control shoes for reducing excessive rearfoot motion in fatigued runners. Phys Ther Sport. 2007, 8: 75-81. 10.1016/j.ptsp.2006.12.002.CrossRef
35.
go back to reference Alvarez RG, Marini A, Schmitt C, Saltzman CL: Stage I and II posterior tibial tendon dysfunction treated by a structured nonoperative management protocol: an orthosis and exercise program. Foot Ankle Int. 2006, 27 (1): 2-8.PubMed Alvarez RG, Marini A, Schmitt C, Saltzman CL: Stage I and II posterior tibial tendon dysfunction treated by a structured nonoperative management protocol: an orthosis and exercise program. Foot Ankle Int. 2006, 27 (1): 2-8.PubMed
36.
go back to reference Miller RH, Meardon SA, Derrick TR, Gillette JC: Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome. J Appl Biomech. 2008, 24 (3): 262-70.PubMed Miller RH, Meardon SA, Derrick TR, Gillette JC: Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome. J Appl Biomech. 2008, 24 (3): 262-70.PubMed
37.
go back to reference Ferber R, Kendall KD, Farr L: Changes in knee biomechanics following a hip abductor strengthening protocol for runners with patellofemoral pain syndrome. J Ath Training. Ferber R, Kendall KD, Farr L: Changes in knee biomechanics following a hip abductor strengthening protocol for runners with patellofemoral pain syndrome. J Ath Training.
38.
go back to reference Ringleb SI, Kavros SJ, Kotajarvi BR, Hansen DK, Kitaoka HB, Kaufman KR: Changes in gait associated with acute stage II posterior tibial tendon dysfunction. Gait Posture. 2007, 25 (4): 555-564. 10.1016/j.gaitpost.2006.06.008.CrossRefPubMed Ringleb SI, Kavros SJ, Kotajarvi BR, Hansen DK, Kitaoka HB, Kaufman KR: Changes in gait associated with acute stage II posterior tibial tendon dysfunction. Gait Posture. 2007, 25 (4): 555-564. 10.1016/j.gaitpost.2006.06.008.CrossRefPubMed
39.
go back to reference Miller RH, Chang R, Baird JL, Van Emmerik RE, Hamill J: Variability in kinematic coupling assessed by vector coding and continuous relative phase. J Biomech. 2010, 43 (13): 2554-2560. 10.1016/j.jbiomech.2010.05.014.CrossRefPubMed Miller RH, Chang R, Baird JL, Van Emmerik RE, Hamill J: Variability in kinematic coupling assessed by vector coding and continuous relative phase. J Biomech. 2010, 43 (13): 2554-2560. 10.1016/j.jbiomech.2010.05.014.CrossRefPubMed
Metadata
Title
Changes in joint coupling and variability during walking following tibialis posterior muscle fatigue
Authors
Reed Ferber
Michael B Pohl
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2011
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-4-6

Other articles of this Issue 1/2011

Journal of Foot and Ankle Research 1/2011 Go to the issue