Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 5/2016

01-10-2016 | Original Research

Changes in cerebral oxygen saturation during transcatheter aortic valve replacement

Authors: Jessica Brodt, Greta Vladinov, Catalina Castillo-Pedraza, Lebron Cooper, Edward Maratea

Published in: Journal of Clinical Monitoring and Computing | Issue 5/2016

Login to get access

Abstract

Cerebral oxygen saturation (rSO2) is a non-invasive monitor used to monitor cerebral oxygen balance and perfusion. Decreases in rSO2 >20 % from baseline have been associated with cerebral ischemia and increased perioperative morbidity. During transcatheter aortic valve replacement (TAVR), hemodynamic manipulation with ventricular pacing up to 180 beats per minute is necessary for valve deployment. The magnitude and duration of rSO2 change during this manipulation is unclear. In this small case series, changes in rSO2 in patients undergoing TAVR are investigated. Ten ASA IV patients undergoing TAVR with general anesthesia at a university hospital were prospectively observed. Cerebral oximetry values were analyzed at four points: pre-procedure (baseline), after tracheal intubation, during valve deployment, and at procedure end. Baseline rSO2 values were 54.5 ± 6.9 %. After induction of general anesthesia, rSO2 increased to a mean of 66.0 ± 6.7 %. During valve deployment, the mean rSO2 decreased <20 % below baseline to 48.5 ± 13.4 %. In two patients, rSO2 decreased >20 % of baseline. Cerebral oxygenation returned to post-induction values in all patients 13 ± 10 min after valve deployment. At procedure end, the mean rSO2 was 67.6 ± 8.1 %. As expected, rapid ventricular pacing resulting in the desired decrease in cardiac output during valve deployment was associated with a significant decrease in rSO2 compared to post-induction values. However, despite increased post-induction values in all patients, whether related to increased inspired oxygen fraction or reduced cerebral oxygen consumption under anesthesia, two patients experienced a significant decrease in rSO2 compared to baseline. Recovery to baseline was not immediate, and took up to 20 min in three patients. Furthermore, baseline rSO2 in this population was at the lower limit of the published normal range. Significant cerebral desaturation during valve deployment may potentially be limited by maximizing rSO2 after anesthetic induction. Future studies should attempt to correlate recovery in rSO2 with recovery of hemodynamics and cardiac function, provide detailed neurological assessments pre and post procedure, determine the most effective method of maximizing rSO2 prior to hemodynamic manipulation, and provide the most rapid method of recovery of rSO2 following valve deployment.
Literature
1.
go back to reference Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.CrossRefPubMed Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.CrossRefPubMed
2.
go back to reference Edmonds HL, Ganzel BL, Austin EH. Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8:147–66.CrossRefPubMed Edmonds HL, Ganzel BL, Austin EH. Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8:147–66.CrossRefPubMed
3.
go back to reference Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29:463–87.CrossRefPubMed Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29:463–87.CrossRefPubMed
5.
go back to reference Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36–45.CrossRefPubMed Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36–45.CrossRefPubMed
6.
go back to reference Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8.CrossRefPubMed Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8.CrossRefPubMed
7.
go back to reference Casati A, Fanelli G, Pietropaoli P, et al. Monitoring cerebral oxygen saturation in elderly patients undergoing general abdominal surgery: a prospective cohort study. Eur J Anaesthesiol. 2007;1:59–65. Casati A, Fanelli G, Pietropaoli P, et al. Monitoring cerebral oxygen saturation in elderly patients undergoing general abdominal surgery: a prospective cohort study. Eur J Anaesthesiol. 2007;1:59–65.
8.
go back to reference Madsen PL, Nielsen HB, Christiansen P. Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol. 2000;20:158–64.CrossRefPubMed Madsen PL, Nielsen HB, Christiansen P. Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol. 2000;20:158–64.CrossRefPubMed
9.
go back to reference Samra SK, Dy EA, Welch K, Dorje P, Zelenock GB, Stanley JC. Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology. 2000;93:964–70.CrossRefPubMed Samra SK, Dy EA, Welch K, Dorje P, Zelenock GB, Stanley JC. Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology. 2000;93:964–70.CrossRefPubMed
10.
go back to reference Otto CM, Bonow RO Valvular heart disease. In: Bonow: Braunwald’s heart disease. A textbook of cardiovascular medicine. Amsterdam: Elselvier; 2011. Otto CM, Bonow RO Valvular heart disease. In: Bonow: Braunwald’s heart disease. A textbook of cardiovascular medicine. Amsterdam: Elselvier; 2011.
11.
go back to reference Kodali SK, Williams MR, Smith CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012;366:1686–95.CrossRefPubMed Kodali SK, Williams MR, Smith CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012;366:1686–95.CrossRefPubMed
12.
go back to reference Makkar RR, Fontana GP, Jilaihawi H, et al. Tanscatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med. 2012;366:1696–704.CrossRefPubMed Makkar RR, Fontana GP, Jilaihawi H, et al. Tanscatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med. 2012;366:1696–704.CrossRefPubMed
13.
go back to reference Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high risk patients. N Engl J Med. 2011;364:2187–98.CrossRefPubMed Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high risk patients. N Engl J Med. 2011;364:2187–98.CrossRefPubMed
14.
go back to reference Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.CrossRefPubMed Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.CrossRefPubMed
15.
go back to reference Heringlake M, Garbers C, Kabler JH, et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology. 2011;114:58–69.CrossRefPubMed Heringlake M, Garbers C, Kabler JH, et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology. 2011;114:58–69.CrossRefPubMed
Metadata
Title
Changes in cerebral oxygen saturation during transcatheter aortic valve replacement
Authors
Jessica Brodt
Greta Vladinov
Catalina Castillo-Pedraza
Lebron Cooper
Edward Maratea
Publication date
01-10-2016
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 5/2016
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-015-9758-8

Other articles of this Issue 5/2016

Journal of Clinical Monitoring and Computing 5/2016 Go to the issue