Skip to main content
Top
Published in: Radiation Oncology 1/2020

Open Access 01-12-2020 | Cervical Cancer | Research

Study on the ability of 3D gamma analysis and bio-mathematical model in detecting dose changes caused by dose-calculation-grid-size (DCGS)

Authors: Han Bai, Sijin Zhu, Xingrao Wu, Xuhong Liu, Feihu Chen, Jiawen Yan

Published in: Radiation Oncology | Issue 1/2020

Login to get access

Abstract

Objective

To explore the efficacy and sensitivity of 3D gamma analysis and bio-mathematical model for cervical cancer in detecting dose changes caused by dose-calculation-grid-size (DCGS).

Methods

17 patients’ plans for cervical cancer were enrolled (Pinnacle TPS, VMAT), and the DCGS was changed from 2.0 mm to 5.0 mm to calculate the planned dose respectively. The dose distribution calculated by DCGS = 2.0 mm as the “reference” data set (RDS), the dose distribution calculated by the rest DCGS as the“measurement”data set (MDS), the 3D gamma passing rates and the (N) TCPs of the all structures under different DCGS were obtained, and then analyze the ability of 3D gamma analysis and (N) TCP model in detecting dose changes and what factors affect this ability.

Results

The effect of DCGS on planned dose was obvious. When the gamma standard was 1.0 mm, 1.0 and 10.0%, the difference of the results of the DCGS on dose-effect could be detected by 3D gamma analysis (all p value < 0.05). With the decline of the standard, 3D gamma analysis’ ability to detect this difference shows weaker. When the standard was 1.0 mm, 3.0 and 10.0%, the p value of > 0.05 accounted for the majority. With DCGS = 2.0 mm being RDS, ∆gamma-passing-rate presented the same trend with ∆(N) TCPs of all structures except for the femurs only when the 1.0 mm, 1.0 and 10.0% standards were adopted for the 3D gamma analysis.

Conclusions

The 3D gamma analysis and bio-mathematical model can be used to analyze the effect of DCGS on the planned dose. For comparison, the former’s detection ability has a lot to do with the designed standard, and the latter’s capability is related to the parameters and calculated accuracy instrinsically.
Literature
1.
go back to reference Yoshihiro U, Shingo O, Masaru I, et al. Strategies for reducing ovarian dose in volumetric modulated arc therapy (VMAT) for postoperative uterine cervical cancer [J]. Br J Radiol. 2018;91(1081):20160777.PubMed Yoshihiro U, Shingo O, Masaru I, et al. Strategies for reducing ovarian dose in volumetric modulated arc therapy (VMAT) for postoperative uterine cervical cancer [J]. Br J Radiol. 2018;91(1081):20160777.PubMed
2.
go back to reference Sharfo, AW ; Breedveld, S ; Voet, PW ; et al. Validation of Fully Automated VMAT Plan Generation for Library-Based Plan-of-the-Day Cervical Cancer Radiotherapy [J].PLoS One, 2016, 11(12) :e0169202. Sharfo, AW ; Breedveld, S ; Voet, PW ; et al. Validation of Fully Automated VMAT Plan Generation for Library-Based Plan-of-the-Day Cervical Cancer Radiotherapy [J].PLoS One, 2016, 11(12) :e0169202.
3.
go back to reference Sharfo AW, Voet PW, Breedveld S, et al. Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning [J]. Radiother Oncol. 2015;114(3):395–401.PubMed Sharfo AW, Voet PW, Breedveld S, et al. Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning [J]. Radiother Oncol. 2015;114(3):395–401.PubMed
4.
go back to reference Tinoco M, Waga E, Tran K, et al. RapidPlan development of VMAT plans for cervical cancer patients in low- and middle-income countries [J]. Med Dosim. 2020;45(2):172–8.PubMed Tinoco M, Waga E, Tran K, et al. RapidPlan development of VMAT plans for cervical cancer patients in low- and middle-income countries [J]. Med Dosim. 2020;45(2):172–8.PubMed
5.
go back to reference Wali L, Helal A, Darwesh R, et al. A dosimetric comparison of volumetric modulated arc therapy (VMAT) and high dose rate (HDR) brachytherapy in localized cervical cancer radiotherapy [J]. J Xray Sci Technol. 2019;27(3):473–83.PubMed Wali L, Helal A, Darwesh R, et al. A dosimetric comparison of volumetric modulated arc therapy (VMAT) and high dose rate (HDR) brachytherapy in localized cervical cancer radiotherapy [J]. J Xray Sci Technol. 2019;27(3):473–83.PubMed
6.
go back to reference Wang Y, Chen L, Zhu F, et al. A study of minimum segment width parameter on VMAT plan quality, delivery accuracy, and efficiency for cervical cancer using Monaco TPS [J]. J Appl Clin Med Phys. 2018 Sep;19(5):609–15.PubMedPubMedCentral Wang Y, Chen L, Zhu F, et al. A study of minimum segment width parameter on VMAT plan quality, delivery accuracy, and efficiency for cervical cancer using Monaco TPS [J]. J Appl Clin Med Phys. 2018 Sep;19(5):609–15.PubMedPubMedCentral
7.
go back to reference pinnacle3 classic plan (user manual) [M], 2012, 183. pinnacle3 classic plan (user manual) [M], 2012, 183.
8.
go back to reference Park JM, Park SY, Kim JI, et al. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway [J]. Australas Phys Eng Sci Med. 2017;40(1):209–17.PubMed Park JM, Park SY, Kim JI, et al. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway [J]. Australas Phys Eng Sci Med. 2017;40(1):209–17.PubMed
9.
go back to reference SS, Gou; RW, Jiang, QE, Ding, et al. Effects of mesh accuracy on radiotherapy plan for different cancers [J]. Chin J Cancer Prev Treat, 2017, 24(20): 1465–1468. SS, Gou; RW, Jiang, QE, Ding, et al. Effects of mesh accuracy on radiotherapy plan for different cancers [J]. Chin J Cancer Prev Treat, 2017, 24(20): 1465–1468.
10.
go back to reference Lam D, Zhang X, Li H, et al. Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning [J]. Med Phys. 2019;46(10):4666–75.PubMed Lam D, Zhang X, Li H, et al. Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning [J]. Med Phys. 2019;46(10):4666–75.PubMed
11.
go back to reference Han C, Yu W, Zheng X, et al. Composite QA for intensity-modulated radiation therapy using individual volume-based 3D gamma indices [J]. J Radiat Res. 2018;59(5):669–76.PubMedPubMedCentral Han C, Yu W, Zheng X, et al. Composite QA for intensity-modulated radiation therapy using individual volume-based 3D gamma indices [J]. J Radiat Res. 2018;59(5):669–76.PubMedPubMedCentral
12.
go back to reference Low DA, Harms WB, Mutic S, et al. A technique for the quantitative evaluation of dose distributions [J]. Med Phys. 1998;25(5):656–61.PubMed Low DA, Harms WB, Mutic S, et al. A technique for the quantitative evaluation of dose distributions [J]. Med Phys. 1998;25(5):656–61.PubMed
13.
go back to reference Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM task group 119[J]. Med Phys. 2009;36(11):5359–73.PubMed Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM task group 119[J]. Med Phys. 2009;36(11):5359–73.PubMed
14.
go back to reference Shiba E, Saito A, Furumi M, et al. Predictive gamma passing rate by dose uncertainty potential accumulation model [J]. Med Phys. 2019;46(2):999–1005.PubMed Shiba E, Saito A, Furumi M, et al. Predictive gamma passing rate by dose uncertainty potential accumulation model [J]. Med Phys. 2019;46(2):999–1005.PubMed
15.
go back to reference Zhang D, Wang B, Zhang G, et al. Comparison of 3D and 2D gamma passing rate criteria for detection sensitivity to IMRT delivery errors [J]. J Appl Clin Med Phys. 2018;19(4):230–8.PubMedPubMedCentral Zhang D, Wang B, Zhang G, et al. Comparison of 3D and 2D gamma passing rate criteria for detection sensitivity to IMRT delivery errors [J]. J Appl Clin Med Phys. 2018;19(4):230–8.PubMedPubMedCentral
16.
go back to reference Hussein M, Rowshanfarzad P, Ebert MA, et al. A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems [J]. Radiother Oncol. 2013;109(3):370–6.PubMed Hussein M, Rowshanfarzad P, Ebert MA, et al. A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems [J]. Radiother Oncol. 2013;109(3):370–6.PubMed
17.
go back to reference Heilemann G, Poppe B, Laub W. On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance [J]. Med Phys. 2013;40(3):031702 -1-13.PubMed Heilemann G, Poppe B, Laub W. On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance [J]. Med Phys. 2013;40(3):031702 -1-13.PubMed
18.
go back to reference Zhen H, Hrycushko B, Lee H, et al. Dosimetric comparison of Acuros XB with collapsed cone convolution/superposition and anisotropic analytic algorithm for stereotactic ablative radiotherapy of thoracic spinal metastases [J]. J Appl Clin Med Phys. 2015;16(4):181–92.PubMedPubMedCentral Zhen H, Hrycushko B, Lee H, et al. Dosimetric comparison of Acuros XB with collapsed cone convolution/superposition and anisotropic analytic algorithm for stereotactic ablative radiotherapy of thoracic spinal metastases [J]. J Appl Clin Med Phys. 2015;16(4):181–92.PubMedPubMedCentral
19.
go back to reference De Deene Y. Gel dosimetry for the dose verification of intensity modulated radiotherapy treatments [J]. Z Med Phys. 2002;12(2):77–88.PubMed De Deene Y. Gel dosimetry for the dose verification of intensity modulated radiotherapy treatments [J]. Z Med Phys. 2002;12(2):77–88.PubMed
20.
go back to reference Ibbott GS, Maryanski MJ, Eastman P, et al. Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters [J]. Int J Radiat Oncol Biol Phys. 1997;38(5):1097–103.PubMed Ibbott GS, Maryanski MJ, Eastman P, et al. Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters [J]. Int J Radiat Oncol Biol Phys. 1997;38(5):1097–103.PubMed
21.
go back to reference Jursinic, PA ; Sharma, R ; Reuter, J. MapCHECK used for rotational IMRT measurements: Step-and-shoot, Tomotherapy, RapidArc [J]. Med Phys, 2010,37(6Part1) :2837–2846. Jursinic, PA ; Sharma, R ; Reuter, J. MapCHECK used for rotational IMRT measurements: Step-and-shoot, Tomotherapy, RapidArc [J]. Med Phys, 2010,37(6Part1) :2837–2846.
22.
go back to reference Varasteh Anvar M, Attili A, Ciocca M, et al. Quality assurance of carbon ion and proton beams: a feasibility study for using the 2D MatriXX detector [J]. Phys Med. 2016 Jun;32(6):831–7.PubMed Varasteh Anvar M, Attili A, Ciocca M, et al. Quality assurance of carbon ion and proton beams: a feasibility study for using the 2D MatriXX detector [J]. Phys Med. 2016 Jun;32(6):831–7.PubMed
23.
go back to reference Bedford JL, Fast MF, Nill S, et al. Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment [J]. Radiother Oncol. 2015;117(3):491–5.PubMedPubMedCentral Bedford JL, Fast MF, Nill S, et al. Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment [J]. Radiother Oncol. 2015;117(3):491–5.PubMedPubMedCentral
24.
go back to reference Morrison CT, Symons KL, Woodings SJ, et al. Verification of junction dose between VMAT arcs of total body irradiation using a sun Nuclear ArcCHECK phantom [J]. J Appl Clin Med Phys. 2017;18(6):177–82.PubMedPubMedCentral Morrison CT, Symons KL, Woodings SJ, et al. Verification of junction dose between VMAT arcs of total body irradiation using a sun Nuclear ArcCHECK phantom [J]. J Appl Clin Med Phys. 2017;18(6):177–82.PubMedPubMedCentral
25.
go back to reference Yang B, Geng H, Ding Y, et al. Development of a novel methodology for QA of respiratory-gated and VMAT beam delivery using Octavius 4D phantom [J]. Med Dosim. 2019;44(1):83–90.PubMed Yang B, Geng H, Ding Y, et al. Development of a novel methodology for QA of respiratory-gated and VMAT beam delivery using Octavius 4D phantom [J]. Med Dosim. 2019;44(1):83–90.PubMed
26.
go back to reference Alharthi T, Pogson EM, Arumugam S, et al. Pre-treatment verification of lung SBRT VMAT plans with delivery errors: toward a better understanding of the gamma index analysis [J]. Phys Med. 2018;49(5):119–28.PubMed Alharthi T, Pogson EM, Arumugam S, et al. Pre-treatment verification of lung SBRT VMAT plans with delivery errors: toward a better understanding of the gamma index analysis [J]. Phys Med. 2018;49(5):119–28.PubMed
27.
go back to reference Kim JI, Park SY, Kim HJ, et al. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT [J]. Radiat Oncol. 2014;28(9):167–76. Kim JI, Park SY, Kim HJ, et al. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT [J]. Radiat Oncol. 2014;28(9):167–76.
28.
go back to reference 3DVH Reference Guide –Complete 3D Patient Dose Analysis [M]. 2018,93–93. 3DVH Reference Guide –Complete 3D Patient Dose Analysis [M]. 2018,93–93.
29.
go back to reference Leibel,SA;Zelefsky,MJ;Kutcher,GJ; et al. The biological basis and clinical application of three-dimensional conformal external beam radiation therapy in carcinoma of the prostate [J]. Semin Oncol, 1994, 21(5):580–597. Leibel,SA;Zelefsky,MJ;Kutcher,GJ; et al. The biological basis and clinical application of three-dimensional conformal external beam radiation therapy in carcinoma of the prostate [J]. Semin Oncol, 1994, 21(5):580–597.
30.
go back to reference Chow JL, Jiang R. Dose-volume and radiobiological dependence on the calculation grid size in prostate VMAT planning [J]. Med Dosim. 2018;43(4):383–9.PubMed Chow JL, Jiang R. Dose-volume and radiobiological dependence on the calculation grid size in prostate VMAT planning [J]. Med Dosim. 2018;43(4):383–9.PubMed
31.
go back to reference Gulliford SL, Partridge M, Sydes MR, et al. Parameters for the Lyman Kutcher Burman (LKB) model of Normal tissue complication probability (NTCP) for specific rectal complications observed in clinical practise [J]. Radiother Oncol. 2012;102(3):347–51.PubMed Gulliford SL, Partridge M, Sydes MR, et al. Parameters for the Lyman Kutcher Burman (LKB) model of Normal tissue complication probability (NTCP) for specific rectal complications observed in clinical practise [J]. Radiother Oncol. 2012;102(3):347–51.PubMed
32.
go back to reference Luxton G, Keall PJ. King; CR. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD) [J]. Phys Med Biol. 2008;53(1):23–36.PubMed Luxton G, Keall PJ. King; CR. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD) [J]. Phys Med Biol. 2008;53(1):23–36.PubMed
33.
go back to reference Fogliata A, Thompson S, Stravato A, et al. On the gEUD biological optimization objective for organs at risk in photon optimizer of eclipse treatment planning system [J]. J Appl Clin Med Phys. 2018;19(1):106–11.PubMed Fogliata A, Thompson S, Stravato A, et al. On the gEUD biological optimization objective for organs at risk in photon optimizer of eclipse treatment planning system [J]. J Appl Clin Med Phys. 2018;19(1):106–11.PubMed
34.
go back to reference Aras S, İkizceli T, Aktan M. Dosimetric comparison of three-dimensional conformal radiotherapy (3D-CRT) and intensity modulated radiotherapy techniques (IMRT) with radiotherapy dose simulations for left-sided mastectomy patients [J]. Eur J Breast Health. 2019;15(2):85–9.PubMedPubMedCentral Aras S, İkizceli T, Aktan M. Dosimetric comparison of three-dimensional conformal radiotherapy (3D-CRT) and intensity modulated radiotherapy techniques (IMRT) with radiotherapy dose simulations for left-sided mastectomy patients [J]. Eur J Breast Health. 2019;15(2):85–9.PubMedPubMedCentral
35.
go back to reference Johansen S, Cozzi L, Olsen DR. A planning comparison of dose patterns in organs at risk and predicted risk for radiation induced malignancy in the contralateral breast following radiation therapy of primary breast using conventional, IMRT and volumetric modulated arc treatment techniques [J]. Acta Oncol. 2009;48(4):495–503.PubMed Johansen S, Cozzi L, Olsen DR. A planning comparison of dose patterns in organs at risk and predicted risk for radiation induced malignancy in the contralateral breast following radiation therapy of primary breast using conventional, IMRT and volumetric modulated arc treatment techniques [J]. Acta Oncol. 2009;48(4):495–503.PubMed
36.
go back to reference Cho KH, Kim JY, Lee SH, et al. Simultaneous integrated boost intensity-modulated radiotherapy in patients with high-grade gliomas [J]. Int J Radiat Oncol Biol Phys. 2010;78(2):390–7.PubMed Cho KH, Kim JY, Lee SH, et al. Simultaneous integrated boost intensity-modulated radiotherapy in patients with high-grade gliomas [J]. Int J Radiat Oncol Biol Phys. 2010;78(2):390–7.PubMed
37.
go back to reference Daly-Schveitzer N, Juliéron M, Tao YG, et al. Intensity-modulated radiation therapy (IMRT): toward a new standard for radiation therapy of head and neck cancer?[J]. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(5):241–7.PubMed Daly-Schveitzer N, Juliéron M, Tao YG, et al. Intensity-modulated radiation therapy (IMRT): toward a new standard for radiation therapy of head and neck cancer?[J]. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(5):241–7.PubMed
38.
go back to reference Ouyang Z, Liu Shen Z, Murray E, et al. Evaluation of auto-planning in IMRT and VMAT for head and neck cancer [J]. J Appl Clin Med Phys. 2019;20(7):39–47.PubMedPubMedCentral Ouyang Z, Liu Shen Z, Murray E, et al. Evaluation of auto-planning in IMRT and VMAT for head and neck cancer [J]. J Appl Clin Med Phys. 2019;20(7):39–47.PubMedPubMedCentral
39.
go back to reference Wiehle R, Knippen S, Grosu AL, et al. VMAT and step-and-shoot IMRT in head and neck cancer: a comparative plan analysis [J]. Strahlenther Onkol. 2011;187(12):820–5.PubMed Wiehle R, Knippen S, Grosu AL, et al. VMAT and step-and-shoot IMRT in head and neck cancer: a comparative plan analysis [J]. Strahlenther Onkol. 2011;187(12):820–5.PubMed
40.
go back to reference Ezzell GA, Galvin JM, Low D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee [J]. Med Phys. 2003;30(8):2089–115.PubMed Ezzell GA, Galvin JM, Low D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee [J]. Med Phys. 2003;30(8):2089–115.PubMed
41.
go back to reference Basran PS, Woo MK, et al. An analysis of tolerance levels in IMRT quality assurance procedures [J]. Med Phys. 2008;35(6):2300–7.PubMed Basran PS, Woo MK, et al. An analysis of tolerance levels in IMRT quality assurance procedures [J]. Med Phys. 2008;35(6):2300–7.PubMed
42.
go back to reference McNair HA, Adams EJ, Clark CH, et al. Implementation of IMRT in the radiotherapy department [J]. Br J Radiol. 2003;76(912):850–6.PubMed McNair HA, Adams EJ, Clark CH, et al. Implementation of IMRT in the radiotherapy department [J]. Br J Radiol. 2003;76(912):850–6.PubMed
43.
go back to reference Sanghangthum T, Suriyapee S, Srisatit S, et al. Statistical process control analysis for patient-specific IMRT and VMAT QA [J]. J Radiat Res. 2013;54(3):546–52.PubMed Sanghangthum T, Suriyapee S, Srisatit S, et al. Statistical process control analysis for patient-specific IMRT and VMAT QA [J]. J Radiat Res. 2013;54(3):546–52.PubMed
44.
go back to reference Park JY, Kim S, Park HJ, et al. Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arc technique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy [J]. Radiat Oncol. 2014;9(4):5–12.PubMedPubMedCentral Park JY, Kim S, Park HJ, et al. Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arc technique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy [J]. Radiat Oncol. 2014;9(4):5–12.PubMedPubMedCentral
45.
go back to reference Gros, S ; Descovich, M ; Barani, I ;et al. SU-E-T-446: Effect of Dose Calculation Grid Size Variability on the Specification of Spinal Cord Dose Tolerance for Spinal Stereotactic Body Radiation Therapy [J]. Med Phys, 2012 Jun ;39(6Part17) :3807. Gros, S ; Descovich, M ; Barani, I ;et al. SU-E-T-446: Effect of Dose Calculation Grid Size Variability on the Specification of Spinal Cord Dose Tolerance for Spinal Stereotactic Body Radiation Therapy [J]. Med Phys, 2012 Jun ;39(6Part17) :3807.
46.
go back to reference Bresciani S, Di Dia A, Maggio A, et al. Tomotherapy treatment plan quality assurance: the impact of applied criteria on passing rate in gamma index method [J]. Med Phys. 2013;40(12):121711–20.PubMed Bresciani S, Di Dia A, Maggio A, et al. Tomotherapy treatment plan quality assurance: the impact of applied criteria on passing rate in gamma index method [J]. Med Phys. 2013;40(12):121711–20.PubMed
47.
go back to reference Templeton AK, Chu JC, Turian JV. The sensitivity of ArcCHECK-based gamma analysis to manufactured errors in helical tomotherapy radiation delivery [J]. J Appl Clin Med Phys. 2015;16(1):4814–22.PubMed Templeton AK, Chu JC, Turian JV. The sensitivity of ArcCHECK-based gamma analysis to manufactured errors in helical tomotherapy radiation delivery [J]. J Appl Clin Med Phys. 2015;16(1):4814–22.PubMed
48.
go back to reference Park JY, Kim S, Park HJ, et al. Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arc technique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy [J]. Radiat Oncol. 2014;9(4):5.PubMedPubMedCentral Park JY, Kim S, Park HJ, et al. Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arc technique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy [J]. Radiat Oncol. 2014;9(4):5.PubMedPubMedCentral
49.
go back to reference Huang B, Wu L, Lin P, et al. Dose calculation of Acuros XB and anisotropic analytical algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size [J]. Radiat Oncol. 2015;10(6):53.PubMedPubMedCentral Huang B, Wu L, Lin P, et al. Dose calculation of Acuros XB and anisotropic analytical algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size [J]. Radiat Oncol. 2015;10(6):53.PubMedPubMedCentral
Metadata
Title
Study on the ability of 3D gamma analysis and bio-mathematical model in detecting dose changes caused by dose-calculation-grid-size (DCGS)
Authors
Han Bai
Sijin Zhu
Xingrao Wu
Xuhong Liu
Feihu Chen
Jiawen Yan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2020
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-020-01603-6

Other articles of this Issue 1/2020

Radiation Oncology 1/2020 Go to the issue