Skip to main content
Top
Published in: Neurological Sciences 8/2015

01-08-2015 | Original Article

Cerebral cortex, hippocampus, striatum and cerebellum show differential susceptibility to quinolinic acid-induced oxidative stress

Authors: Samuel Vandresen-Filho, Wagner Carbolin Martins, Daniela Bohn Bertoldo, Gianni Mancini, Andreza Fabro De Bem, Carla Inês Tasca

Published in: Neurological Sciences | Issue 8/2015

Login to get access

Abstract

Quinolinic acid (QA) is a NMDA receptor agonist implicated in pathological conditions, such as neurodegenerative diseases and epilepsy. Time-course responses of different brain regions after QA i.c.v. infusion are not known. We aimed to investigate the time-course effects of QA infusion on oxidative stress-related parameters on different brain regions. In cerebral cortex, QA infusion promoted an early (1 h) decrease of NPSH levels and GR activity followed by a later increase in ROS production (8 h) and TBARS detection (24–72 h). In the hippocampus, QA promoted an increase in ROS production that lasted 8 h. Striatal tissue presented a later increase in ROS generation (8–72 h) after QA infusion. In the cerebellum, an increase in the GPx activity after 8 h was the only effect observed. These results show that oxidative stress induced by QA i.c.v. infusion is region and time dependent.
Literature
1.
go back to reference Vandresen-Filho S, Severino PC, Constantino LC, Martins WC, Molz S, Dal-Cim T, Bertoldo DB, Silva FR, Tasca CI (2014) N-methyl-D-aspartate preconditioning prevents quinolinic acid-induced deregulation of glutamate and calcium homeostasis in mice hippocampus. Neurotox Res. doi:10.1007/s12640-014-9496-6 PubMed Vandresen-Filho S, Severino PC, Constantino LC, Martins WC, Molz S, Dal-Cim T, Bertoldo DB, Silva FR, Tasca CI (2014) N-methyl-D-aspartate preconditioning prevents quinolinic acid-induced deregulation of glutamate and calcium homeostasis in mice hippocampus. Neurotox Res. doi:10.​1007/​s12640-014-9496-6 PubMed
2.
go back to reference Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64(2):185–218PubMedCrossRef Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64(2):185–218PubMedCrossRef
3.
go back to reference Piermartiri TC, Vandresen-Filho S, de Araujo Herculano B, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR, Tasca CI (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115PubMedCrossRef Piermartiri TC, Vandresen-Filho S, de Araujo Herculano B, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR, Tasca CI (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115PubMedCrossRef
4.
go back to reference Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuro Report 11(2):249–253 Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuro Report 11(2):249–253
5.
go back to reference Severino PC, Muller Gdo A, Vandresen-Filho S, Tasca CI (2011) Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci 89(15–16):570–576PubMedCrossRef Severino PC, Muller Gdo A, Vandresen-Filho S, Tasca CI (2011) Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci 89(15–16):570–576PubMedCrossRef
6.
go back to reference Torres FV, da Silva Filho M, Antunes C, Kalinine E, Antoniolli E, Portela LV, Souza DO, Tort AB (2010) Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Exp Neurol 221(2):296–306PubMedCrossRef Torres FV, da Silva Filho M, Antunes C, Kalinine E, Antoniolli E, Portela LV, Souza DO, Tort AB (2010) Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Exp Neurol 221(2):296–306PubMedCrossRef
7.
go back to reference Zeni AL, Vandresen-Filho S, Dal-Cim T, Martins WC, Bertoldo DB, Maraschin M, Tasca CI (2014) Aloysia gratissima prevents cellular damage induced by glutamatergic excitotoxicity. J Pharm Pharmacol 66(9):1294–1302PubMedCrossRef Zeni AL, Vandresen-Filho S, Dal-Cim T, Martins WC, Bertoldo DB, Maraschin M, Tasca CI (2014) Aloysia gratissima prevents cellular damage induced by glutamatergic excitotoxicity. J Pharm Pharmacol 66(9):1294–1302PubMedCrossRef
8.
go back to reference Russi MA, Vandresen-Filho S, Rieger DK, Costa AP, Lopes MW, Cunha RM, Teixeira EH, Nascimento KS, Cavada BS, Tasca CI, Leal RB (2012) ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem Res 37(2):288–297PubMedCrossRef Russi MA, Vandresen-Filho S, Rieger DK, Costa AP, Lopes MW, Cunha RM, Teixeira EH, Nascimento KS, Cavada BS, Tasca CI, Leal RB (2012) ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem Res 37(2):288–297PubMedCrossRef
9.
go back to reference Vandresen-Filho S, Hoeller AA, Herculano BA, Duzzioni M, Duarte FS, Piermartiri TC, Boeck CC, de Lima TC, Marino-Neto J, Tasca CI (2013) NMDA preconditioning attenuates cortical and hippocampal seizures induced by intracerebroventricular quinolinic acid infusion. Neurotox Res 24(1):55–62PubMedCrossRef Vandresen-Filho S, Hoeller AA, Herculano BA, Duzzioni M, Duarte FS, Piermartiri TC, Boeck CC, de Lima TC, Marino-Neto J, Tasca CI (2013) NMDA preconditioning attenuates cortical and hippocampal seizures induced by intracerebroventricular quinolinic acid infusion. Neurotox Res 24(1):55–62PubMedCrossRef
10.
go back to reference Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55(4):397–402PubMedCrossRef Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55(4):397–402PubMedCrossRef
11.
go back to reference Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B, Santiago-Lopez D, Villeda-Hernandez J, Galvan-Arzate S, Jimenez-Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86(2):479–488PubMedCrossRef Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B, Santiago-Lopez D, Villeda-Hernandez J, Galvan-Arzate S, Jimenez-Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86(2):479–488PubMedCrossRef
12.
go back to reference Vandresen-Filho S, de Araujo Herculano B, Franco JL, Boeck CR, Dafre AL, Tasca CI (2007) Evaluation of glutathione metabolism in NMDA preconditioning against quinolinic acid-induced seizures in mice cerebral cortex and hippocampus. Brain Res 1184:38–45PubMedCrossRef Vandresen-Filho S, de Araujo Herculano B, Franco JL, Boeck CR, Dafre AL, Tasca CI (2007) Evaluation of glutathione metabolism in NMDA preconditioning against quinolinic acid-induced seizures in mice cerebral cortex and hippocampus. Brain Res 1184:38–45PubMedCrossRef
13.
go back to reference de Araujo Herculano B, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI (2011) NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3 K and MAPK/ERK signaling pathways. Behav Brain Res 219(1):92–97CrossRef de Araujo Herculano B, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI (2011) NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3 K and MAPK/ERK signaling pathways. Behav Brain Res 219(1):92–97CrossRef
15.
go back to reference Mancini G, de Oliveira J, Hort MA, Moreira EL, Ribeiro-do-Valle RM, Rocha JB, de Bem AF (2013) Diphenyl diselenide differently modulates cardiovascular redox responses in young adult and middle-aged low-density lipoprotein receptor knockout hypercholesterolemic mice. J Pharm Pharmacol 66(3):387–397PubMedCrossRef Mancini G, de Oliveira J, Hort MA, Moreira EL, Ribeiro-do-Valle RM, Rocha JB, de Bem AF (2013) Diphenyl diselenide differently modulates cardiovascular redox responses in young adult and middle-aged low-density lipoprotein receptor knockout hypercholesterolemic mice. J Pharm Pharmacol 66(3):387–397PubMedCrossRef
16.
go back to reference Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27(1–2):146–159PubMedCrossRef Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27(1–2):146–159PubMedCrossRef
19.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMed
20.
go back to reference Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379PubMed Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379PubMed
21.
go back to reference Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128(8):1754–1760PubMedCentralPubMedCrossRef Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128(8):1754–1760PubMedCentralPubMedCrossRef
22.
go back to reference Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19(1):275–281PubMedCrossRef Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19(1):275–281PubMedCrossRef
23.
go back to reference Schwarcz R, Kohler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38(1):85–90PubMedCrossRef Schwarcz R, Kohler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38(1):85–90PubMedCrossRef
24.
go back to reference Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10PubMedCrossRef Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10PubMedCrossRef
25.
go back to reference Maharaj H, Maharaj DS, Daya S (2006) Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity. Metab Brain Dis 21(2–3):189–199PubMed Maharaj H, Maharaj DS, Daya S (2006) Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity. Metab Brain Dis 21(2–3):189–199PubMed
26.
go back to reference Kuo A, Smith MT (2014) Theoretical and practical applications of the intracerebroventricular route for CSF sampling and drug administration in CNS drug discovery research: a mini review. J Neurosci Methods 233:166–171PubMedCrossRef Kuo A, Smith MT (2014) Theoretical and practical applications of the intracerebroventricular route for CSF sampling and drug administration in CNS drug discovery research: a mini review. J Neurosci Methods 233:166–171PubMedCrossRef
27.
go back to reference Celso Constantino L, Tasca CI, Boeck CR (2014) The role of NMDA receptors in the development of brain resistance through pre- and postconditioning. Aging Dis 5(6):430–441PubMedCentralPubMed Celso Constantino L, Tasca CI, Boeck CR (2014) The role of NMDA receptors in the development of brain resistance through pre- and postconditioning. Aging Dis 5(6):430–441PubMedCentralPubMed
28.
go back to reference Vizi ES, Kisfali M, Lorincz T (2013) Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. Brain Res Bull 93:32–38PubMedCrossRef Vizi ES, Kisfali M, Lorincz T (2013) Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. Brain Res Bull 93:32–38PubMedCrossRef
29.
30.
go back to reference Hassoun EA, Al-Ghafri M, Abushaban A (2003) The role of antioxidant enzymes in TCDD-induced oxidative stress in various brain regions of rats after subchronic exposure. Free Radic Biol Med 35(9):1028–1036PubMedCrossRef Hassoun EA, Al-Ghafri M, Abushaban A (2003) The role of antioxidant enzymes in TCDD-induced oxidative stress in various brain regions of rats after subchronic exposure. Free Radic Biol Med 35(9):1028–1036PubMedCrossRef
31.
go back to reference Brannan TS, Maker HS, Weiss C, Cohen G (1980) Regional distribution of glutathione peroxidase in the adult rat brain. J Neurochem 35(4):1013–1014PubMedCrossRef Brannan TS, Maker HS, Weiss C, Cohen G (1980) Regional distribution of glutathione peroxidase in the adult rat brain. J Neurochem 35(4):1013–1014PubMedCrossRef
32.
go back to reference Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4(2):288–314PubMedCrossRef Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4(2):288–314PubMedCrossRef
33.
go back to reference Cardoso S, Santos MS, Seica R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta 1802(11):942–951PubMedCrossRef Cardoso S, Santos MS, Seica R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta 1802(11):942–951PubMedCrossRef
34.
go back to reference Siqueira IR, Fochesatto C, de Andrade A, Santos M, Hagen M, Bello-Klein A, Netto CA (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23(8):663–671PubMedCrossRef Siqueira IR, Fochesatto C, de Andrade A, Santos M, Hagen M, Bello-Klein A, Netto CA (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23(8):663–671PubMedCrossRef
35.
go back to reference Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41(3):233–241PubMedCrossRef Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41(3):233–241PubMedCrossRef
36.
go back to reference Perez-Severiano F, Montes S, Geronimo-Olvera C, Segovia J (2013) Study of oxidative damage and antioxidant systems in two Huntington’s disease rodent models. Methods Mol Biol 1010:177–200PubMedCrossRef Perez-Severiano F, Montes S, Geronimo-Olvera C, Segovia J (2013) Study of oxidative damage and antioxidant systems in two Huntington’s disease rodent models. Methods Mol Biol 1010:177–200PubMedCrossRef
37.
go back to reference Fatokun AA, Smith RA, Stone TW (2008) Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Brain Res 1215:200–207PubMedCrossRef Fatokun AA, Smith RA, Stone TW (2008) Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Brain Res 1215:200–207PubMedCrossRef
38.
go back to reference Yan E, Castillo-Melendez M, Smythe G, Walker D (2005) Quinolinic acid promotes albumin deposition in Purkinje cell, astrocytic activation and lipid peroxidation in fetal brain. Neuroscience 134(3):867–875PubMedCrossRef Yan E, Castillo-Melendez M, Smythe G, Walker D (2005) Quinolinic acid promotes albumin deposition in Purkinje cell, astrocytic activation and lipid peroxidation in fetal brain. Neuroscience 134(3):867–875PubMedCrossRef
39.
go back to reference Monaghan DT, Beaton JA (1991) Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Eur J Pharmacol 194(1):123–125PubMedCrossRef Monaghan DT, Beaton JA (1991) Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Eur J Pharmacol 194(1):123–125PubMedCrossRef
40.
go back to reference Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, Lim CK, Brew BJ, Cullen KM, Guillemin GJ (2013) Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One 8(4):e59749PubMedCentralPubMedCrossRef Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, Lim CK, Brew BJ, Cullen KM, Guillemin GJ (2013) Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One 8(4):e59749PubMedCentralPubMedCrossRef
Metadata
Title
Cerebral cortex, hippocampus, striatum and cerebellum show differential susceptibility to quinolinic acid-induced oxidative stress
Authors
Samuel Vandresen-Filho
Wagner Carbolin Martins
Daniela Bohn Bertoldo
Gianni Mancini
Andreza Fabro De Bem
Carla Inês Tasca
Publication date
01-08-2015
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 8/2015
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-015-2180-7

Other articles of this Issue 8/2015

Neurological Sciences 8/2015 Go to the issue