Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Cerebral cortex dose sparing for glioblastoma patients: IMRT versus robust treatment planning

Authors: Ann-Katrin Exeli, Daniel Kellner, Lukas Exeli, Phil Steininger, Frank Wolf, Felix Sedlmayer, Heinz Deutschmann

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

To date, patients with glioblastoma still have a bad median overall survival rate despite radiation dose-escalation and combined modality treatment. Neurocognitive decline is a crucial adverse event which may be linked to high doses to the cortex. In a planning study, we investigated the impact of dose constraints to the cerebral cortex and its relation to the organs at risk for glioblastoma patients.

Methods

Cortical sparing was implemented into the optimization process for two planning approaches: classical intensity-modulated radiotherapy (IMRT) and robust treatment planning. The plans with and without objectives for cortex sparing where compared based on dose-volume histograms (DVH) data of the main organs at risk. Additionally the cortex volume above a critical threshold of 28.6 Gy was elaborated. Furthermore, IMRT plans were compared with robust treatment plans regarding potential cortex sparing.

Results

Cortical dose constraints result in a statistically significant reduced cerebral cortex volume above 28.6 Gy without negative effects to the surrounding organs at risk independently of the optimization technique. For IMRT we found a mean volume reduction of doses beyond the threshold of 19%, and 16% for robust treatment planning, respectively. Robust plans delivered sharper dose gradients around the target volume in an order of 3 – 6%. Aside from that the integration of cortical sparing into the optimization process has the potential to reduce the dose around the target volume (4 – 8%).

Conclusions

We were able to show that dose to the cerebral cortex can be significantly reduced both with robust treatment planning and IMRT while maintaining clinically adequate target coverage and without corrupting any organ at risk. Robust treatment plans delivered more conformal plans compared to IMRT and were superior in regards to cortical sparing.
Literature
1.
go back to reference Barani I, Larson D. Current understanding and treatment of glioblastoma. Cancer Treat Res. 2015;163:49–73.CrossRefPubMed Barani I, Larson D. Current understanding and treatment of glioblastoma. Cancer Treat Res. 2015;163:49–73.CrossRefPubMed
2.
go back to reference Nachbichler SB, Schupp G, Ballhausen H, et al. Temozolomide during radiotherapy of glioblastoma multiforme. Strahlenther Onkol. 2017;193:1–7.CrossRef Nachbichler SB, Schupp G, Ballhausen H, et al. Temozolomide during radiotherapy of glioblastoma multiforme. Strahlenther Onkol. 2017;193:1–7.CrossRef
3.
go back to reference Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMed Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMed
4.
go back to reference Meyers C, Brown PD. Role and relevance of Neurocognitive assessment in clinical trials of patients with CNS tumors. J Clin Oncol. 2006;24:1305–9.CrossRefPubMed Meyers C, Brown PD. Role and relevance of Neurocognitive assessment in clinical trials of patients with CNS tumors. J Clin Oncol. 2006;24:1305–9.CrossRefPubMed
5.
go back to reference Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S. Mechanisms of radiotherapy associated cognitive disability in patients with brain tumours. Neurol. 2016;185:52–64. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S. Mechanisms of radiotherapy associated cognitive disability in patients with brain tumours. Neurol. 2016;185:52–64.
6.
go back to reference Karunamuni R, Moore K, Seibert T, Li N, White NS, Bartsch H, et al. Radiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. Radiother Oncol. 2016;118:29–34.CrossRefPubMedPubMedCentral Karunamuni R, Moore K, Seibert T, Li N, White NS, Bartsch H, et al. Radiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. Radiother Oncol. 2016;118:29–34.CrossRefPubMedPubMedCentral
7.
go back to reference Karunamuni R, Bartsch H, White N, Moiseenko V, Carmona R, Marshall D, Seibert T, et al. Dose-dependent cortical thinning after partial brain irradiation in high-grade Glioma. Int J Radiat Oncol Biol Phys. 2016;94:297–304.CrossRefPubMed Karunamuni R, Bartsch H, White N, Moiseenko V, Carmona R, Marshall D, Seibert T, et al. Dose-dependent cortical thinning after partial brain irradiation in high-grade Glioma. Int J Radiat Oncol Biol Phys. 2016;94:297–304.CrossRefPubMed
8.
go back to reference Chu M, Zinchenko Y, Henderson SG, Sharpe MB. Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty. Phys Med Biol. 2005;50:54–63.CrossRef Chu M, Zinchenko Y, Henderson SG, Sharpe MB. Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty. Phys Med Biol. 2005;50:54–63.CrossRef
9.
go back to reference Fredriksson A, Forsgren A, Hardemark B. Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys. 2011;38:1672–84.CrossRefPubMed Fredriksson A, Forsgren A, Hardemark B. Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys. 2011;38:1672–84.CrossRefPubMed
10.
go back to reference Goitein M. Calculation of the uncertainty in the dose delivered during radiation therapy. Med Phys. 1985;12:608–12.CrossRefPubMed Goitein M. Calculation of the uncertainty in the dose delivered during radiation therapy. Med Phys. 1985;12:608–12.CrossRefPubMed
11.
go back to reference Lens E, Kotte AN, Patel A, Heerkens HD, Bal M, van Tienhoven G, et al. Probabilistic treatment planning for pancreatic cancer treatment: prospective incorporation of respiratory motion shows only limited dosimetric benefit. Acta Oncol. 2016;25:1–7. Lens E, Kotte AN, Patel A, Heerkens HD, Bal M, van Tienhoven G, et al. Probabilistic treatment planning for pancreatic cancer treatment: prospective incorporation of respiratory motion shows only limited dosimetric benefit. Acta Oncol. 2016;25:1–7.
12.
go back to reference Fontanarosa D, van der Laan HP, Witte M, Shakirin G, Roelofs E, Langendijk JA, et al. An in silico comparison between margin-based and probabilistic target-planning approaches in head and neck cancer patients. Radiother Oncol. 2013;109:430–6.CrossRefPubMed Fontanarosa D, van der Laan HP, Witte M, Shakirin G, Roelofs E, Langendijk JA, et al. An in silico comparison between margin-based and probabilistic target-planning approaches in head and neck cancer patients. Radiother Oncol. 2013;109:430–6.CrossRefPubMed
13.
go back to reference Baum C, Alber M, Birkner M, Nüsslin F. Robust treatment planning for intensity modulated radiotherapy of prostate cancer based on coverage probabilities. Radiother Oncol. 2006;78:27–35.CrossRefPubMed Baum C, Alber M, Birkner M, Nüsslin F. Robust treatment planning for intensity modulated radiotherapy of prostate cancer based on coverage probabilities. Radiother Oncol. 2006;78:27–35.CrossRefPubMed
14.
go back to reference van der Voort S, van de Water S, Perkó Z, Heijmen B. Lathouwers D3, Hoogeman M. Robustness recipes for Minimax robust optimization in intensity modulated proton therapy for Oropharyngeal cancer patients. Int J Radiat Oncol Biol Phys. 2016;95:163–70.CrossRefPubMed van der Voort S, van de Water S, Perkó Z, Heijmen B. Lathouwers D3, Hoogeman M. Robustness recipes for Minimax robust optimization in intensity modulated proton therapy for Oropharyngeal cancer patients. Int J Radiat Oncol Biol Phys. 2016;95:163–70.CrossRefPubMed
15.
go back to reference Farzin M, Molls M, Astner S, Rondak I-C, Oechsner M. Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas. Strahlenther Onkol. 2015;191:945–52.CrossRefPubMed Farzin M, Molls M, Astner S, Rondak I-C, Oechsner M. Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas. Strahlenther Onkol. 2015;191:945–52.CrossRefPubMed
16.
go back to reference Adeberg S, Harrabi SB, Bougatf N, Bernhardt D, Rieber J, Koerber SA, et al. Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma. Strahlenther Onkol. 2016;192:770–9.CrossRefPubMed Adeberg S, Harrabi SB, Bougatf N, Bernhardt D, Rieber J, Koerber SA, et al. Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma. Strahlenther Onkol. 2016;192:770–9.CrossRefPubMed
17.
go back to reference Briere TM, McAleer MF, Levy LB, Yang JN. Sparing of normal tissues with volumetric arc radiation therapy for glioblastoma: single institution clinical experience. Radiat Oncol. 2017;12:79.CrossRefPubMedPubMedCentral Briere TM, McAleer MF, Levy LB, Yang JN. Sparing of normal tissues with volumetric arc radiation therapy for glioblastoma: single institution clinical experience. Radiat Oncol. 2017;12:79.CrossRefPubMedPubMedCentral
18.
go back to reference Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, et al. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol. 2016;118:35–42.CrossRefPubMed Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, et al. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol. 2016;118:35–42.CrossRefPubMed
19.
go back to reference Seidel C, Kortmann R-D. Radiotherapie des Glioblastoms. ASCO bestätigt ASTRO-Leitlinie. Strahlenther Onkol. 2017;193:513–4.CrossRefPubMed Seidel C, Kortmann R-D. Radiotherapie des Glioblastoms. ASCO bestätigt ASTRO-Leitlinie. Strahlenther Onkol. 2017;193:513–4.CrossRefPubMed
20.
go back to reference Landberg T, Chavaudra J, Dobbs J, Gerard JP, Hanks G, Horiot JC, et al. Report 62, journal of the international commission on radiation units and measurements 1999. Landberg T, Chavaudra J, Dobbs J, Gerard JP, Hanks G, Horiot JC, et al. Report 62, journal of the international commission on radiation units and measurements 1999.
23.
go back to reference Gol A, Kellaway P, Shapiro M, Hurst CM. Studies of hippocampectomy in the monkey, baboon, and cat. Behavioral changes and a preliminary evaluation of cognitive function. Neurology. 1963;13:1031–41.CrossRefPubMed Gol A, Kellaway P, Shapiro M, Hurst CM. Studies of hippocampectomy in the monkey, baboon, and cat. Behavioral changes and a preliminary evaluation of cognitive function. Neurology. 1963;13:1031–41.CrossRefPubMed
24.
go back to reference Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44:109–20.CrossRefPubMed Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44:109–20.CrossRefPubMed
25.
go back to reference Kazda T, Jancalek R, Pospisil P, Sevela O, Prochazka, Miroslav Vrzal M, et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014;9:139.CrossRefPubMedPubMedCentral Kazda T, Jancalek R, Pospisil P, Sevela O, Prochazka, Miroslav Vrzal M, et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014;9:139.CrossRefPubMedPubMedCentral
27.
go back to reference Khalifa J, Tensaouti F, Lusque A, Plas B, Lotterie JA, Benouaich-Amiel A, et al. Subventricular zones: new key targets for glioblastoma treatment. Radiat Oncol. 2017;12:67.CrossRefPubMedPubMedCentral Khalifa J, Tensaouti F, Lusque A, Plas B, Lotterie JA, Benouaich-Amiel A, et al. Subventricular zones: new key targets for glioblastoma treatment. Radiat Oncol. 2017;12:67.CrossRefPubMedPubMedCentral
28.
go back to reference Hofmaier J, Kantz S, Söhn M, Dohm OS, Bächle S, Alber M, et al. Hippocampal sparing radiotherapy for glioblastoma patients: a planning study using volumetric modulated arc therapy. Radiat Oncol. 2016;11:118.CrossRefPubMedPubMedCentral Hofmaier J, Kantz S, Söhn M, Dohm OS, Bächle S, Alber M, et al. Hippocampal sparing radiotherapy for glioblastoma patients: a planning study using volumetric modulated arc therapy. Radiat Oncol. 2016;11:118.CrossRefPubMedPubMedCentral
29.
go back to reference Boehling NS, Grosshans DR, Bluett JB, Palmer MT, Song X, Amos RA, et al. Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas. Int J Radiat Oncol Biol Phys. 2012;82:643–52.CrossRefPubMed Boehling NS, Grosshans DR, Bluett JB, Palmer MT, Song X, Amos RA, et al. Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas. Int J Radiat Oncol Biol Phys. 2012;82:643–52.CrossRefPubMed
30.
go back to reference Harrabi SB, Bougatf N, Mohr A, Haberer T, Herfarth K, Combs SE, et al. Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma. Strahlenther Onkol. 2016;192:759–69.CrossRefPubMedPubMedCentral Harrabi SB, Bougatf N, Mohr A, Haberer T, Herfarth K, Combs SE, et al. Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma. Strahlenther Onkol. 2016;192:759–69.CrossRefPubMedPubMedCentral
31.
go back to reference Avishek Chatterjee A, Serban M, Abdulkarim B, Panet-Raymond V, Souhami L, Shenouda G, Sabri S, et al. Performance of knowledge-based radiation therapy planning for the Glioblastoma disease site. Int J Radiation Oncol Biol Phys. 2017;99:1–8.CrossRef Avishek Chatterjee A, Serban M, Abdulkarim B, Panet-Raymond V, Souhami L, Shenouda G, Sabri S, et al. Performance of knowledge-based radiation therapy planning for the Glioblastoma disease site. Int J Radiation Oncol Biol Phys. 2017;99:1–8.CrossRef
32.
go back to reference Lee TF, Fang FM, Chao PJ, Wang LK, Leung SW. Dosimetric comparison of helical tomotherapy and step-and-shoot intensity-modulated radiotherapy in nasopharyngeal carcinoma. Radiother Oncol. 2008;89:89–96.CrossRefPubMed Lee TF, Fang FM, Chao PJ, Wang LK, Leung SW. Dosimetric comparison of helical tomotherapy and step-and-shoot intensity-modulated radiotherapy in nasopharyngeal carcinoma. Radiother Oncol. 2008;89:89–96.CrossRefPubMed
33.
go back to reference Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76:36–41.CrossRef Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76:36–41.CrossRef
34.
go back to reference Kojima S, Suzuki K, Hirata M, Shinohara H, Ueno E. Depicting the semicircular canals with inner-ear MRI: a comparison of the SPACE and TrueFISP sequences. J Magn Reson Imaging. 2013;37:652–9.CrossRefPubMed Kojima S, Suzuki K, Hirata M, Shinohara H, Ueno E. Depicting the semicircular canals with inner-ear MRI: a comparison of the SPACE and TrueFISP sequences. J Magn Reson Imaging. 2013;37:652–9.CrossRefPubMed
35.
go back to reference Pan CC, Eisbruch A, Lee JS, Snorrason RM, Ten Haken RK, Kileny PR. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys. 2005;61:1393–402.CrossRefPubMed Pan CC, Eisbruch A, Lee JS, Snorrason RM, Ten Haken RK, Kileny PR. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys. 2005;61:1393–402.CrossRefPubMed
36.
go back to reference Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994;30:755–63.CrossRefPubMed Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994;30:755–63.CrossRefPubMed
37.
go back to reference Yamazaki H, Shiomi H, Tsubokura T, Kodani T, Nishimura T, Aibe N, et al. Quantitative assessment of interobserver variability in target volume delineation on stereotacticradiotherapy treatment for pituitary adenoma and meningioma near optic tract. Radiat Oncol. 2011;6:10.CrossRefPubMedPubMedCentral Yamazaki H, Shiomi H, Tsubokura T, Kodani T, Nishimura T, Aibe N, et al. Quantitative assessment of interobserver variability in target volume delineation on stereotacticradiotherapy treatment for pituitary adenoma and meningioma near optic tract. Radiat Oncol. 2011;6:10.CrossRefPubMedPubMedCentral
Metadata
Title
Cerebral cortex dose sparing for glioblastoma patients: IMRT versus robust treatment planning
Authors
Ann-Katrin Exeli
Daniel Kellner
Lukas Exeli
Phil Steininger
Frank Wolf
Felix Sedlmayer
Heinz Deutschmann
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-0953-x

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue