Skip to main content
Top
Published in: Journal of Anesthesia 1/2018

01-02-2018 | Original Article

Central noradrenergic activity affects analgesic effect of Neuropeptide S

Authors: Kei Jinushi, Tetsuya Kushikata, Takashi Kudo, Girolamo Calo, Remo Guerrini, Kazuyoshi Hirota

Published in: Journal of Anesthesia | Issue 1/2018

Login to get access

Abstract

Background

Neuropeptide S (NPS) is an endogenous neuropeptide controlling anxiolysis, wakefulness, and analgesia. NPS containing neurons exist near to the locus coeruleus (LC) involved in the descending anti-nociceptive system. NPS interacts with central noradrenergic neurons; thus brain noradrenergic signaling may be involved in NPS-induced analgesia. We tested NPS analgesia in noradrenergic neuron-lesioned rats using a selective LC noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4).

Methods

A total 66 male Sprague–Dawley rats weighing 350–450 g were used. Analgesic effects of NPS were evaluated using hot-plate and tail-flick test with or without DSP-4. The animal allocated into 3 groups; hot-plate with NPS alone intracerebroventricular (icv) (0.0, 1.0, 3.3, and 10.0 nmol), tail-flick NPS alone icv (0.0 and 10.0 nmol), and hot-plate with NPS and DSP-4 (0 or 50 mg/kg ip). In hot-plate with NPS and DSP-4 group, noradrenaline content in the cerebral cortex, pons, hypothalamus, were measured.

Results

NPS 10 nmol icv prolonged hot plate (%MPE) but not tail flick latency at 30 and 40 min after administration. DSP-4 50 mg/kg decreased noradrenaline content in the all 3 regions. The NA depletion inhibited NPS analgesic effect in the hot plate test but not tail flick test. There was a significant correlation between hot plate latency (percentage of maximum possible effect: %MPE) with NPS 10 nmol and NA content in the cerebral cortex (p = 0.017, r 2 = 0.346) which noradrenergic innervation arisen mainly from the LC. No other regions had the correlation.

Conclusions

NPS analgesia interacts with LC noradrenergic neuronal activity.
Literature
1.
go back to reference Ruzza C, Calo G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005–2016). Expert Opin Ther Pat. 2017;27:347–62.CrossRefPubMed Ruzza C, Calo G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005–2016). Expert Opin Ther Pat. 2017;27:347–62.CrossRefPubMed
2.
go back to reference Rizzi A, Vergura R, Marzola G, Ruzza C, Guerrini R, Salvadori S, Regoli D, Calo G. Neuropeptide S is a stimulatory anxiolytic agent: a behavioural study in mice. Br J Pharmacol. 2008;154:471–9.CrossRefPubMedPubMedCentral Rizzi A, Vergura R, Marzola G, Ruzza C, Guerrini R, Salvadori S, Regoli D, Calo G. Neuropeptide S is a stimulatory anxiolytic agent: a behavioural study in mice. Br J Pharmacol. 2008;154:471–9.CrossRefPubMedPubMedCentral
3.
go back to reference Dine J, Ionescu IA, Stepan J, Yen YC, Holsboer F, Landgraf R, Eder M, Schmidt U. Identification of a role for the ventral hippocampus in neuropeptide S-elicited anxiolysis. PLoS ONE. 2013;8:e60219.CrossRefPubMedPubMedCentral Dine J, Ionescu IA, Stepan J, Yen YC, Holsboer F, Landgraf R, Eder M, Schmidt U. Identification of a role for the ventral hippocampus in neuropeptide S-elicited anxiolysis. PLoS ONE. 2013;8:e60219.CrossRefPubMedPubMedCentral
4.
go back to reference Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron. 2004;43:487–97.CrossRefPubMed Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron. 2004;43:487–97.CrossRefPubMed
5.
go back to reference Yang Y, Zhao M, Zhang Y, Shen X, Yuan Y. Correlation of 5-HTT, BDNF and NPSR1 gene polymorphisms with anxiety and depression in asthmatic patients. Int J Mol Med. 2016;38:65–74.CrossRefPubMedPubMedCentral Yang Y, Zhao M, Zhang Y, Shen X, Yuan Y. Correlation of 5-HTT, BDNF and NPSR1 gene polymorphisms with anxiety and depression in asthmatic patients. Int J Mol Med. 2016;38:65–74.CrossRefPubMedPubMedCentral
6.
go back to reference Smith JP, Prince MA, Achua JK, Robertson JM, Anderson RT, Ronan PJ, Summers CH. Intensity of anxiety is modified via complex integrative stress circuitries. Psychoneuroendocrinology. 2016;63:351–61.CrossRefPubMed Smith JP, Prince MA, Achua JK, Robertson JM, Anderson RT, Ronan PJ, Summers CH. Intensity of anxiety is modified via complex integrative stress circuitries. Psychoneuroendocrinology. 2016;63:351–61.CrossRefPubMed
7.
go back to reference Han RW, Xu HJ, Zhang RS, Wang P, Chang M, Peng YL, Deng KY, Wang R. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation. Neurobiol Learn Mem. 2014;107:32–6.CrossRefPubMed Han RW, Xu HJ, Zhang RS, Wang P, Chang M, Peng YL, Deng KY, Wang R. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation. Neurobiol Learn Mem. 2014;107:32–6.CrossRefPubMed
8.
go back to reference Ruzza C, Pulga A, Rizzi A, Marzola G, Guerrini R, Calo G. Behavioural phenotypic characterization of CD-1 mice lacking the neuropeptide S receptor. Neuropharmacology. 2012;62:1999–2009.CrossRefPubMed Ruzza C, Pulga A, Rizzi A, Marzola G, Guerrini R, Calo G. Behavioural phenotypic characterization of CD-1 mice lacking the neuropeptide S receptor. Neuropharmacology. 2012;62:1999–2009.CrossRefPubMed
9.
go back to reference Beiderbeck DI, Lukas M, Neumann ID. Anti-aggressive effects of neuropeptide S independent of anxiolysis in male rats. Front Behav Neurosci. 2014;8:185.CrossRefPubMedPubMedCentral Beiderbeck DI, Lukas M, Neumann ID. Anti-aggressive effects of neuropeptide S independent of anxiolysis in male rats. Front Behav Neurosci. 2014;8:185.CrossRefPubMedPubMedCentral
10.
go back to reference Ruzza C, Asth L, Guerrini R, Trapella C, Gavioli EC. Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor. Neuropharmacology. 2015;97:1–6.CrossRefPubMed Ruzza C, Asth L, Guerrini R, Trapella C, Gavioli EC. Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor. Neuropharmacology. 2015;97:1–6.CrossRefPubMed
11.
go back to reference Ahnaou A, Drinkenburg WH. Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats. Neuropsychobiology. 2012;65:195–205.CrossRefPubMed Ahnaou A, Drinkenburg WH. Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats. Neuropsychobiology. 2012;65:195–205.CrossRefPubMed
12.
go back to reference Oishi M, Kushikata T, Niwa H, Yakoshi C, Ogasawara C, Calo G, Guerrini R, Hirota K. Endogenous neuropeptide S tone influences sleep-wake rhythm in rats. Neurosci Lett. 2014;581:94–7.CrossRefPubMed Oishi M, Kushikata T, Niwa H, Yakoshi C, Ogasawara C, Calo G, Guerrini R, Hirota K. Endogenous neuropeptide S tone influences sleep-wake rhythm in rats. Neurosci Lett. 2014;581:94–7.CrossRefPubMed
13.
go back to reference Roncace V, Polli FS, Zojicic M, Kohlmeier KA. Neuropeptide S (NPS) is a neuropeptide with cellular actions in arousal and anxiety-related nuclei: functional implications for effects of NPS on wakefulness and mood. Neuropharmacology. 2017;126:292–317.CrossRefPubMed Roncace V, Polli FS, Zojicic M, Kohlmeier KA. Neuropeptide S (NPS) is a neuropeptide with cellular actions in arousal and anxiety-related nuclei: functional implications for effects of NPS on wakefulness and mood. Neuropharmacology. 2017;126:292–317.CrossRefPubMed
14.
go back to reference Kushikata T, Yoshida H, Kudo M, Salvadori S, Calo G, Hirota K. The effects of neuropeptide S on general anesthesia in rats. Anesth Analg. 2011;112:845–9.CrossRefPubMed Kushikata T, Yoshida H, Kudo M, Salvadori S, Calo G, Hirota K. The effects of neuropeptide S on general anesthesia in rats. Anesth Analg. 2011;112:845–9.CrossRefPubMed
15.
go back to reference Kong XP, Wang C, Xie JF, Zhao P, Dai LR, Shao YF, Lin JS, Hou YP. Neuropeptide S reduces propofol- or ketamine-induced slow wave states through activation of cognate receptors in the rat. Neuropeptides. 2017;63:59–66.CrossRefPubMed Kong XP, Wang C, Xie JF, Zhao P, Dai LR, Shao YF, Lin JS, Hou YP. Neuropeptide S reduces propofol- or ketamine-induced slow wave states through activation of cognate receptors in the rat. Neuropeptides. 2017;63:59–66.CrossRefPubMed
16.
go back to reference Li W, Gao YH, Chang M, Peng YL, Yao J, Han RW, Wang R. Neuropeptide S inhibits the acquisition and the expression of conditioned place preference to morphine in mice. Peptides. 2009;30:234–40.CrossRefPubMed Li W, Gao YH, Chang M, Peng YL, Yao J, Han RW, Wang R. Neuropeptide S inhibits the acquisition and the expression of conditioned place preference to morphine in mice. Peptides. 2009;30:234–40.CrossRefPubMed
17.
go back to reference Peng YL, Zhang JN, Chang M, Li W, Han RW, Wang R. Effects of central neuropeptide S in the mouse formalin test. Peptides. 2010;31:1878–83.CrossRefPubMed Peng YL, Zhang JN, Chang M, Li W, Han RW, Wang R. Effects of central neuropeptide S in the mouse formalin test. Peptides. 2010;31:1878–83.CrossRefPubMed
18.
go back to reference Medina G, Ji G, Gregoire S, Neugebauer V. Nasal application of neuropeptide S inhibits arthritis pain-related behaviors through an action in the amygdala. Mol Pain. 2014;10:32.CrossRefPubMedPubMedCentral Medina G, Ji G, Gregoire S, Neugebauer V. Nasal application of neuropeptide S inhibits arthritis pain-related behaviors through an action in the amygdala. Mol Pain. 2014;10:32.CrossRefPubMedPubMedCentral
19.
go back to reference Holanda AD, Asth L, Santos AR, de Guerrini R, de PS-RV, Calo G, Andre E, Gavioli EC. Central adenosine A1 and A2A receptors mediate the antinociceptive effects of neuropeptide S in the mouse formalin test. Life Sci. 2015;120:8–12.CrossRefPubMed Holanda AD, Asth L, Santos AR, de Guerrini R, de PS-RV, Calo G, Andre E, Gavioli EC. Central adenosine A1 and A2A receptors mediate the antinociceptive effects of neuropeptide S in the mouse formalin test. Life Sci. 2015;120:8–12.CrossRefPubMed
20.
go back to reference Yang F, Peng L, Luo J, Yi H, Hu X. Intra-amygdala microinfusion of neuropeptide S attenuates neuropathic pain and suppresses the response of spinal microglia and astrocytes after spinal nerve ligation in rats. Peptides. 2016;82:26–34.CrossRefPubMed Yang F, Peng L, Luo J, Yi H, Hu X. Intra-amygdala microinfusion of neuropeptide S attenuates neuropathic pain and suppresses the response of spinal microglia and astrocytes after spinal nerve ligation in rats. Peptides. 2016;82:26–34.CrossRefPubMed
21.
go back to reference Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol. 2011;519:1867–93.CrossRefPubMed Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol. 2011;519:1867–93.CrossRefPubMed
22.
go back to reference Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK. Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol. 2007;500:84–102.CrossRefPubMed Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK. Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol. 2007;500:84–102.CrossRefPubMed
23.
go back to reference Okamura N, Garau C, Duangdao DM, Clark SD, Jungling K, Pape HC, Reinscheid RK. Neuropeptide S enhances memory during the consolidation phase and interacts with noradrenergic systems in the brain. Neuropsychopharmacology. 2011;36:744–52.CrossRefPubMed Okamura N, Garau C, Duangdao DM, Clark SD, Jungling K, Pape HC, Reinscheid RK. Neuropeptide S enhances memory during the consolidation phase and interacts with noradrenergic systems in the brain. Neuropsychopharmacology. 2011;36:744–52.CrossRefPubMed
24.
go back to reference Pertovaara A. The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol. 2013;716:2–7.CrossRefPubMed Pertovaara A. The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol. 2013;716:2–7.CrossRefPubMed
25.
26.
go back to reference Guerrini R, Camarda V, Trapella C, Calo G, Rizzi A, Ruzza C, Fiorini S, Marzola E, Reinscheid RK, Regoli D, Salvadori S. Synthesis and biological activity of human neuropeptide S analogues modified in position 5: identification of potent and pure neuropeptide S receptor antagonists. J Med Chem. 2009;52:524–9.CrossRefPubMedPubMedCentral Guerrini R, Camarda V, Trapella C, Calo G, Rizzi A, Ruzza C, Fiorini S, Marzola E, Reinscheid RK, Regoli D, Salvadori S. Synthesis and biological activity of human neuropeptide S analogues modified in position 5: identification of potent and pure neuropeptide S receptor antagonists. J Med Chem. 2009;52:524–9.CrossRefPubMedPubMedCentral
27.
go back to reference Kushikata T, Kubota T, Fang J, Krueger JM. Glial cell line-derived neurotrophic factor promotes sleep in rats and rabbits. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1001–6.CrossRefPubMed Kushikata T, Kubota T, Fang J, Krueger JM. Glial cell line-derived neurotrophic factor promotes sleep in rats and rabbits. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1001–6.CrossRefPubMed
28.
go back to reference Zaczek R, Fritschy JM, Culp S, De Souza EB, Grzanna R. Differential effects of DSP-4 on noradrenaline axons in cerebral cortex and hypothalamus may reflect heterogeneity of noradrenaline uptake sites. Brain Res. 1990;522:308–14.CrossRefPubMed Zaczek R, Fritschy JM, Culp S, De Souza EB, Grzanna R. Differential effects of DSP-4 on noradrenaline axons in cerebral cortex and hypothalamus may reflect heterogeneity of noradrenaline uptake sites. Brain Res. 1990;522:308–14.CrossRefPubMed
29.
go back to reference Mohammad Ahmadi Soleimani S, Azizi H, Mirnajafi-Zadeh J, Semnanian S. Orexin type 1 receptor antagonism in rat locus coeruleus prevents the analgesic effect of intra-LC met-enkephalin microinjection. Pharmacol Biochem Behav. 2015;136:102–6.CrossRefPubMed Mohammad Ahmadi Soleimani S, Azizi H, Mirnajafi-Zadeh J, Semnanian S. Orexin type 1 receptor antagonism in rat locus coeruleus prevents the analgesic effect of intra-LC met-enkephalin microinjection. Pharmacol Biochem Behav. 2015;136:102–6.CrossRefPubMed
30.
go back to reference Ross SB, Stenfors C. DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action. Neurotox Res. 2015;27:15–30.CrossRefPubMed Ross SB, Stenfors C. DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action. Neurotox Res. 2015;27:15–30.CrossRefPubMed
31.
go back to reference Veilleux-Lemieux D, Castel A, Carrier D, Beaudry F, Vachon P. Pharmacokinetics of ketamine and xylazine in young and old Sprague–Dawley rats. J Am Assoc Lab Anim Sci. 2013;52:567–70.PubMedPubMedCentral Veilleux-Lemieux D, Castel A, Carrier D, Beaudry F, Vachon P. Pharmacokinetics of ketamine and xylazine in young and old Sprague–Dawley rats. J Am Assoc Lab Anim Sci. 2013;52:567–70.PubMedPubMedCentral
32.
go back to reference Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48.CrossRefPubMed Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48.CrossRefPubMed
33.
go back to reference Kudo T, Kushikata T, Kudo M, Kudo T, Hirota K. A central neuropathic pain model by DSP-4 induced lesion of noradrenergic neurons: preliminary report. Neurosci Lett. 2010;481:102–4.CrossRefPubMed Kudo T, Kushikata T, Kudo M, Kudo T, Hirota K. A central neuropathic pain model by DSP-4 induced lesion of noradrenergic neurons: preliminary report. Neurosci Lett. 2010;481:102–4.CrossRefPubMed
34.
go back to reference Ossipov MH, Kovelowski CJ, Nichols ML, Hruby VJ, Porreca F. Characterization of supraspinal antinociceptive actions of opioid delta agonists in the rat. Pain. 1995;62:287–93.CrossRefPubMed Ossipov MH, Kovelowski CJ, Nichols ML, Hruby VJ, Porreca F. Characterization of supraspinal antinociceptive actions of opioid delta agonists in the rat. Pain. 1995;62:287–93.CrossRefPubMed
35.
go back to reference Viguier F, Michot B, Hamon M, Bourgoin S. Multiple roles of serotonin in pain control mechanisms—implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol. 2013;716:8–16.CrossRefPubMed Viguier F, Michot B, Hamon M, Bourgoin S. Multiple roles of serotonin in pain control mechanisms—implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol. 2013;716:8–16.CrossRefPubMed
Metadata
Title
Central noradrenergic activity affects analgesic effect of Neuropeptide S
Authors
Kei Jinushi
Tetsuya Kushikata
Takashi Kudo
Girolamo Calo
Remo Guerrini
Kazuyoshi Hirota
Publication date
01-02-2018
Publisher
Springer Japan
Published in
Journal of Anesthesia / Issue 1/2018
Print ISSN: 0913-8668
Electronic ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-017-2427-y

Other articles of this Issue 1/2018

Journal of Anesthesia 1/2018 Go to the issue