Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2020

Open Access 01-12-2020 | Central Diabetes Insipidus | Case report

Gradient washout and secondary nephrogenic diabetes insipidus after brain injury in an infant: a case report

Authors: Nathan Chang, Karley Mariano, Lakshmi Ganesan, Holly Cooper, Kevin Kuo

Published in: Journal of Medical Case Reports | Issue 1/2020

Login to get access

Abstract

Background

Disorders of water and sodium balance can occur after brain injury. Prolonged polyuria resulting from central diabetes insipidus and cerebral salt wasting complicated by gradient washout and a type of secondary nephrogenic diabetes insipidus, however, has not been described previously, to the best of our knowledge. We report an unusual case of an infant with glioblastoma who, after tumor resection, was treated for concurrent central diabetes insipidus and cerebral salt wasting complicated by secondary nephrogenic diabetes insipidus.

Case presentation

A 5-month-old Hispanic girl was found to have a large, hemorrhagic, suprasellar glioblastoma causing obstructive hydrocephalus. Prior to mass resection, she developed central diabetes insipidus. Postoperatively, she continued to have central diabetes insipidus and concurrent cerebral salt wasting soon after. She was managed with a vasopressin infusion, sodium supplementation, fludrocortisone, and urine output replacements. Despite resolution of her other major medical issues, she remained in the pediatric intensive care unit for continual and aggressive management of water and sodium derangements. Starting on postoperative day 18, her polyuria began increasing dramatically and did not abate with increasing vasopressin. Nephrology was consulted. Her blood urea nitrogen was undetectable during this time, and it was thought that she may have developed a depletion of inner medullary urea and osmotic gradient: a “gradient washout.” Supplemental dietary protein was added to her enteral nutrition, and her fluid intake was decreased. Within 4 days, her blood urea nitrogen increased, and her vasopressin and fluid replacement requirements significantly decreased. She was transitioned soon thereafter to subcutaneous desmopressin and transferred out of the pediatric intensive care unit.

Conclusions

Gradient washout has not been widely reported in humans, although it has been observed in the mammalian kidneys after prolonged polyuria. Although not a problem with aquaporin protein expression or production, gradient washout causes a different type of secondary nephrogenic diabetes insipidus because the absence of a medullary gradient impairs water reabsorption. We report a case of an infant who developed complex water and sodium imbalances after brain injury. Prolonged polyuria resulting from both water and solute diuresis with low enteral protein intake was thought to cause a urea gradient washout and secondary nephrogenic diabetes insipidus. The restriction of fluid replacements and supplementation of enteral protein appeared adequate to restore the renal osmotic gradient and efficacy of vasopressin.
Literature
1.
go back to reference Kruis RW, Schouten-van Meeteren AY, Finken MJ, Oostdijk W, van Trotsenburg AS, Boot AM, Claahsen-van der Grinten HL, van Lindert EJ, Han KS, Hoving EW, Michiels EM. Management and consequences of postoperative fluctuations in plasma sodium concentration after pediatric brain tumor surgery in the sellar region: a national cohort analysis. Pituitary. 2018;21(4):384–92.CrossRef Kruis RW, Schouten-van Meeteren AY, Finken MJ, Oostdijk W, van Trotsenburg AS, Boot AM, Claahsen-van der Grinten HL, van Lindert EJ, Han KS, Hoving EW, Michiels EM. Management and consequences of postoperative fluctuations in plasma sodium concentration after pediatric brain tumor surgery in the sellar region: a national cohort analysis. Pituitary. 2018;21(4):384–92.CrossRef
2.
go back to reference Shen B, Li L, Li T. Concurrence of inappropriate antidiuretic hormone secretion and cerebral salt wasting syndromes after traumatic brain injury. Front Neurosci. 2017;11:499.CrossRef Shen B, Li L, Li T. Concurrence of inappropriate antidiuretic hormone secretion and cerebral salt wasting syndromes after traumatic brain injury. Front Neurosci. 2017;11:499.CrossRef
3.
go back to reference Leonard J, Garrett RE, Salottolo K, Slone DS, Mains CW, Carrick MM, Bar-Or D. Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med. 2015;23:98.CrossRef Leonard J, Garrett RE, Salottolo K, Slone DS, Mains CW, Carrick MM, Bar-Or D. Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med. 2015;23:98.CrossRef
4.
go back to reference Edate S, Albanese A. Management of electrolyte and fluid disorders after brain surgery for pituitary/suprasellar tumours. Horm Res Paediatr. 2015;83(5):293–301.CrossRef Edate S, Albanese A. Management of electrolyte and fluid disorders after brain surgery for pituitary/suprasellar tumours. Horm Res Paediatr. 2015;83(5):293–301.CrossRef
5.
go back to reference Taplin CE, Silink MA. Fludrocortisone therapy in cerebral salt wasting. Pediatrics. 2006;118(6):e1904.CrossRef Taplin CE, Silink MA. Fludrocortisone therapy in cerebral salt wasting. Pediatrics. 2006;118(6):e1904.CrossRef
6.
go back to reference Lin JJ, Lin KL, Hsia SH, Wu CT, Wang HS. Combined central diabetes insipidus and cerebral salt wasting syndrome in children. Pediatr Neurol. 2009;40(2):84–7.CrossRef Lin JJ, Lin KL, Hsia SH, Wu CT, Wang HS. Combined central diabetes insipidus and cerebral salt wasting syndrome in children. Pediatr Neurol. 2009;40(2):84–7.CrossRef
7.
go back to reference Wu X, Zhou X, Gao L, Wu X, Fei L, Mao Y, Hu J, Zhou L. Diagnosis and management of combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury. World Neurosurg. 2016;88:483–7.CrossRef Wu X, Zhou X, Gao L, Wu X, Fei L, Mao Y, Hu J, Zhou L. Diagnosis and management of combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury. World Neurosurg. 2016;88:483–7.CrossRef
8.
go back to reference Costa MM, Esteves C, Castedo JL, Pereira J, Carvalho D. A challenging coexistence of central diabetes insipidus and cerebral salt wasting syndrome: a case report. J Med Case Rep. 2018;12:212.CrossRef Costa MM, Esteves C, Castedo JL, Pereira J, Carvalho D. A challenging coexistence of central diabetes insipidus and cerebral salt wasting syndrome: a case report. J Med Case Rep. 2018;12:212.CrossRef
9.
go back to reference Ferry RJ Jr, Kesavulu V, Kelly A, Katz LE, Moshang T Jr. Hyponatremia and polyuria in children with central diabetes insipidus: challenges in diagnosis and management. J Pediatr. 2001;138(5):744–7.CrossRef Ferry RJ Jr, Kesavulu V, Kelly A, Katz LE, Moshang T Jr. Hyponatremia and polyuria in children with central diabetes insipidus: challenges in diagnosis and management. J Pediatr. 2001;138(5):744–7.CrossRef
10.
go back to reference Sands JM, Layton HE. Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol. 2014;76:387–409.CrossRef Sands JM, Layton HE. Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol. 2014;76:387–409.CrossRef
11.
go back to reference Cadnapaphornchai MA. Water homeostasis. In: Kher K, Schnaper HW, Greenbaum LA, editors. Clinical pediatric nephrology. 3rd ed. Boca Raton: CRC Press; 2016. p. 255–84. Cadnapaphornchai MA. Water homeostasis. In: Kher K, Schnaper HW, Greenbaum LA, editors. Clinical pediatric nephrology. 3rd ed. Boca Raton: CRC Press; 2016. p. 255–84.
12.
go back to reference Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10(5):852–62.CrossRef Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10(5):852–62.CrossRef
13.
go back to reference Sands JM, Bichet DG. Nephrogenic diabetes insipidus. Ann Intern Med. 2006;144(3):186–94.CrossRef Sands JM, Bichet DG. Nephrogenic diabetes insipidus. Ann Intern Med. 2006;144(3):186–94.CrossRef
14.
go back to reference Cadnapaphornchai MA, Summer SN, Falk S, Thurman JM, Knepper MA, Schrier RW. Effect of primary polydipsia on aquaporin and sodium transporter abundance. Am J Physiol Renal Physiol. 2003;285(5):F965–71.CrossRef Cadnapaphornchai MA, Summer SN, Falk S, Thurman JM, Knepper MA, Schrier RW. Effect of primary polydipsia on aquaporin and sodium transporter abundance. Am J Physiol Renal Physiol. 2003;285(5):F965–71.CrossRef
15.
go back to reference De Wardener HE, Herxheimer A. The effect of a high water intake on the kidney’s ability to concentrate the urine in man. J Physiol. 1957;139(1):42–52.CrossRef De Wardener HE, Herxheimer A. The effect of a high water intake on the kidney’s ability to concentrate the urine in man. J Physiol. 1957;139(1):42–52.CrossRef
16.
go back to reference Vaamonde CA, Presser JI, Clapp WI. Effect of high fluid intake on the renal concentrating mechanism of normal man. J Appl Physiol. 1974;36(4):434–9.CrossRef Vaamonde CA, Presser JI, Clapp WI. Effect of high fluid intake on the renal concentrating mechanism of normal man. J Appl Physiol. 1974;36(4):434–9.CrossRef
17.
go back to reference Sone H, Kawai K, Nishi M, Shimakura S, Bannai C, Kawakami Y, Odawara M, Matsushima T, Okuda Y, Yamashita K. Transient nephrogenic diabetes insipidus accompanied by possible psychogenic polydipsia. Horm Res. 1995;44(4):193–6.CrossRef Sone H, Kawai K, Nishi M, Shimakura S, Bannai C, Kawakami Y, Odawara M, Matsushima T, Okuda Y, Yamashita K. Transient nephrogenic diabetes insipidus accompanied by possible psychogenic polydipsia. Horm Res. 1995;44(4):193–6.CrossRef
18.
go back to reference Epstein FH, Kleeman CR, Pursel S, Hendrikx A. The effect of feeding protein and urea on the renal concentrating process. J Clin Invest. 1957;36(5):635–41.CrossRef Epstein FH, Kleeman CR, Pursel S, Hendrikx A. The effect of feeding protein and urea on the renal concentrating process. J Clin Invest. 1957;36(5):635–41.CrossRef
19.
go back to reference Hendrikx A, Epstein FH. Effect of feeding protein and urea on renal concentrating ability in the rat. Am J Physiol. 1958;195(3):539–42.CrossRef Hendrikx A, Epstein FH. Effect of feeding protein and urea on renal concentrating ability in the rat. Am J Physiol. 1958;195(3):539–42.CrossRef
20.
go back to reference Isozaki T, Verlander JW, Sands JM. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J Clin Invest. 1993;92(5):2448–57.CrossRef Isozaki T, Verlander JW, Sands JM. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J Clin Invest. 1993;92(5):2448–57.CrossRef
21.
go back to reference Sands JM, Naruse M, Jacobs JD, Wilcox JN, Klein JD. Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. J Clin Invest. 1996;97(12):2807–14.CrossRef Sands JM, Naruse M, Jacobs JD, Wilcox JN, Klein JD. Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. J Clin Invest. 1996;97(12):2807–14.CrossRef
22.
go back to reference Pennell JP, Sanjana V, Frey NR, Jamison RL. The effect of urea infusion on the urinary concentrating mechanism in protein-depleted rats. J Clin Invest. 1975;55(2):399–409.CrossRef Pennell JP, Sanjana V, Frey NR, Jamison RL. The effect of urea infusion on the urinary concentrating mechanism in protein-depleted rats. J Clin Invest. 1975;55(2):399–409.CrossRef
Metadata
Title
Gradient washout and secondary nephrogenic diabetes insipidus after brain injury in an infant: a case report
Authors
Nathan Chang
Karley Mariano
Lakshmi Ganesan
Holly Cooper
Kevin Kuo
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2020
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-020-02536-0

Other articles of this Issue 1/2020

Journal of Medical Case Reports 1/2020 Go to the issue