Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Research

Cellular senescence-related genes: predicting prognosis in hepatocellular carcinoma

Authors: Weiwei Yuan, Yuanmin Xu, Zhiheng Wu, Yang Huang, Lei Meng, Shiping Dai, Songcheng Ying, Zhangming Chen, Aman Xu

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Recent studies have shown that the high incidence and low cure rate of hepatocellular carcinoma (HCC) have not improved significantly. Surgery and liver transplantation are the mainstays of prolonging the survival of HCC patients. However, the surgical resection rate of HCC patients is very low, and even after radical surgical resection, the recurrence rate at 5 years postoperatively remains high and the prognosis is very poor, so more treatment options are urgently needed. Increasing evidence suggests that cellular senescence is not only related to cancer development but may also be one of its primary driving factors. We aimed to establish a prognostic signature of senescence-associated genes to predict the prognosis and therapeutic response of HCC patients. The aim of this study was to develop a risk model associated with cellular senescence and to search for potential strategies to treat HCC. We divided HCC patients into two clusters and identified differentially expressed genes (DEGs) between clusters. In this study, low-risk patients had a better prognosis, higher levels of immune cell infiltration, and better efficacy to fluorouracil, Paclitaxel and Cytarabine chemotherapy compared to high-risk patients. To further identify potential biomarkers for HCC, we further validated the expression levels of the four signature genes in HCC and neighbouring normal tissues by in vitro experiments. In conclusion, we identified and constructed a relevant prognostic signature, which performed well in predicting the survival and treatment response of HCC patients. This helps to differentiate between low-score and high-risk HCC, and the results may contribute to precise treatment protocols in clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer. 2019;144(8):1941–53.CrossRefPubMed Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer. 2019;144(8):1941–53.CrossRefPubMed
2.
go back to reference Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 Countries[J]. Cancer J Clin. 2021;71(3):209–49.CrossRef Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 Countries[J]. Cancer J Clin. 2021;71(3):209–49.CrossRef
3.
go back to reference Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and genetic deconstruction of the cellular origin in liver cancer[J]. Nat Rev Cancer. 2015;15(11):653–67.CrossRefPubMed Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and genetic deconstruction of the cellular origin in liver cancer[J]. Nat Rev Cancer. 2015;15(11):653–67.CrossRefPubMed
4.
go back to reference Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer[J]. Gastroenterology. 2020;159(1):335–49.CrossRefPubMed Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer[J]. Gastroenterology. 2020;159(1):335–49.CrossRefPubMed
5.
go back to reference Petrick JL, Florio AA, Znaor A, et al. International trends in hepatocellular carcinoma incidence, 1978–2012[J]. Int J Cancer. 2020;147(2):317–30.CrossRefPubMed Petrick JL, Florio AA, Znaor A, et al. International trends in hepatocellular carcinoma incidence, 1978–2012[J]. Int J Cancer. 2020;147(2):317–30.CrossRefPubMed
6.
7.
go back to reference Song T, Lang M, Ren S, et al. The past, present and future of conversion therapy for liver cancer[J]. Am J Cancer Res. 2021;11(10):4711–24.PubMedPubMedCentral Song T, Lang M, Ren S, et al. The past, present and future of conversion therapy for liver cancer[J]. Am J Cancer Res. 2021;11(10):4711–24.PubMedPubMedCentral
8.
go back to reference Xie S, Wang M, Zeng C, et al. Research progress of targeted therapy combined with immunotherapy for hepatocellular carcinoma[J]. Front Oncol. 2023;13:1197698.CrossRefPubMedPubMedCentral Xie S, Wang M, Zeng C, et al. Research progress of targeted therapy combined with immunotherapy for hepatocellular carcinoma[J]. Front Oncol. 2023;13:1197698.CrossRefPubMedPubMedCentral
9.
go back to reference Liu Z, Lin Y, Zhang J, et al. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma[J]. J Experimental Clin Cancer Research: CR. 2019;38(1):447.CrossRefPubMedCentral Liu Z, Lin Y, Zhang J, et al. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma[J]. J Experimental Clin Cancer Research: CR. 2019;38(1):447.CrossRefPubMedCentral
10.
go back to reference Wang L, Yang Z, Guo F, et al. Research progress of biomarkers in the prediction of anti-PD-1/PD-L1 immunotherapeutic efficiency in lung cancer[J]. Front Immunol. 2023;14:1227797.CrossRefPubMedPubMedCentral Wang L, Yang Z, Guo F, et al. Research progress of biomarkers in the prediction of anti-PD-1/PD-L1 immunotherapeutic efficiency in lung cancer[J]. Front Immunol. 2023;14:1227797.CrossRefPubMedPubMedCentral
11.
go back to reference Lin Q, Wang X, Hu Y. The opportunities and challenges in immunotherapy: insights from the regulation of PD-L1 in cancer cells[J]. Cancer Lett. 2023;569:216318. Lin Q, Wang X, Hu Y. The opportunities and challenges in immunotherapy: insights from the regulation of PD-L1 in cancer cells[J]. Cancer Lett. 2023;569:216318.
12.
go back to reference Ascierto PA, Avallone A, Bifulco C, et al. Perspectives in Immunotherapy: meeting report from Immunotherapy Bridge (Naples, November 30th-December 1st, 2022)[J]. J Translational Med. 2023;21(1):488.CrossRef Ascierto PA, Avallone A, Bifulco C, et al. Perspectives in Immunotherapy: meeting report from Immunotherapy Bridge (Naples, November 30th-December 1st, 2022)[J]. J Translational Med. 2023;21(1):488.CrossRef
13.
go back to reference Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo[J]. Proc Natl Acad Sci USA. 1995;92(20):9363–7.CrossRefPubMedPubMedCentral Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo[J]. Proc Natl Acad Sci USA. 1995;92(20):9363–7.CrossRefPubMedPubMedCentral
14.
go back to reference Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and cancer perspectives[J]. Trends Immunol. 2015;36(4):217–28.CrossRefPubMed Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and cancer perspectives[J]. Trends Immunol. 2015;36(4):217–28.CrossRefPubMed
15.
go back to reference Campisi J, D’adda Di Fagagna F. Cellular senescence: when bad things happen to good cells[J]. Nat Rev Mol Cell Biol. 2007;8(9):729–40.CrossRefPubMed Campisi J, D’adda Di Fagagna F. Cellular senescence: when bad things happen to good cells[J]. Nat Rev Mol Cell Biol. 2007;8(9):729–40.CrossRefPubMed
16.
go back to reference Tchkonia T, Zhu Y, Van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities[J]. J Clin Investig. 2013;123(3):966–72.CrossRefPubMedPubMedCentral Tchkonia T, Zhu Y, Van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities[J]. J Clin Investig. 2013;123(3):966–72.CrossRefPubMedPubMedCentral
17.
go back to reference Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities[J]. Nat Rev Mol Cell Biol. 2021;22(2):75–95.CrossRefPubMed Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities[J]. Nat Rev Mol Cell Biol. 2021;22(2):75–95.CrossRefPubMed
18.
go back to reference Calcinotto A, Kohli J, Zagato E, et al. Cellular Senescence: aging, Cancer, and Injury[J]. Physiol Rev. 2019;99(2):1047–78.CrossRefPubMed Calcinotto A, Kohli J, Zagato E, et al. Cellular Senescence: aging, Cancer, and Injury[J]. Physiol Rev. 2019;99(2):1047–78.CrossRefPubMed
19.
go back to reference Wu S-Y, Xie Z-Y, Yan L-Y, et al. The correlation of EZH2 expression with the progression and prognosis of hepatocellular carcinoma[J]. BMC Immunol. 2022;23(1):28.CrossRefPubMedPubMedCentral Wu S-Y, Xie Z-Y, Yan L-Y, et al. The correlation of EZH2 expression with the progression and prognosis of hepatocellular carcinoma[J]. BMC Immunol. 2022;23(1):28.CrossRefPubMedPubMedCentral
20.
go back to reference Zhang L, Li H-T, Shereda R, et al. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma[J]. Cancer Lett. 2022;548:215899.CrossRefPubMedPubMedCentral Zhang L, Li H-T, Shereda R, et al. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma[J]. Cancer Lett. 2022;548:215899.CrossRefPubMedPubMedCentral
21.
go back to reference Wang P, Yang X, Liu D, et al. Construction of a competing endogenous RNA network to analyse glucose-6-phosphate dehydrogenase dysregulation in hepatocellular carcinoma[J]. Biosci Rep. 2022;42(6):BSR20220674. Wang P, Yang X, Liu D, et al. Construction of a competing endogenous RNA network to analyse glucose-6-phosphate dehydrogenase dysregulation in hepatocellular carcinoma[J]. Biosci Rep. 2022;42(6):BSR20220674.
22.
go back to reference Song M, Pan Q, Yang J, et al. Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma[J]. Br J Cancer. 2020;123(10):1521–34.CrossRefPubMedPubMedCentral Song M, Pan Q, Yang J, et al. Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma[J]. Br J Cancer. 2020;123(10):1521–34.CrossRefPubMedPubMedCentral
23.
go back to reference Dolgormaa G, Harimoto N, Ishii N, et al. Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling[J]. Br J Cancer. 2020;123(7):1145–53.CrossRefPubMedPubMedCentral Dolgormaa G, Harimoto N, Ishii N, et al. Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling[J]. Br J Cancer. 2020;123(7):1145–53.CrossRefPubMedPubMedCentral
24.
go back to reference Qu X, Zhao X, Lin K, et al. M2-like tumor-associated macrophage-related biomarkers to construct a novel prognostic signature, reveal the immune landscape, and screen drugs in hepatocellular carcinoma[J]. Front Immunol. 2022;13:994019.CrossRefPubMedPubMedCentral Qu X, Zhao X, Lin K, et al. M2-like tumor-associated macrophage-related biomarkers to construct a novel prognostic signature, reveal the immune landscape, and screen drugs in hepatocellular carcinoma[J]. Front Immunol. 2022;13:994019.CrossRefPubMedPubMedCentral
25.
go back to reference Lv J, Zhang S, Wu H, et al. Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2[J]. Cancer Lett. 2020;469:22–34.CrossRefPubMed Lv J, Zhang S, Wu H, et al. Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2[J]. Cancer Lett. 2020;469:22–34.CrossRefPubMed
26.
go back to reference Hong J, Lee JH, Zhang Z, et al. PRC2-mediated epigenetic suppression of type I IFN-STAT2 signaling impairs antitumor immunity in luminal breast cancer[J]. Cancer Res. 2022;82(24):4624–40.CrossRefPubMedPubMedCentral Hong J, Lee JH, Zhang Z, et al. PRC2-mediated epigenetic suppression of type I IFN-STAT2 signaling impairs antitumor immunity in luminal breast cancer[J]. Cancer Res. 2022;82(24):4624–40.CrossRefPubMedPubMedCentral
27.
go back to reference Zimmerman SM, Nixon SJ, Chen PY, et al. Ezh2 mutations co-operate with Stat3 to regulate MHC class I antigen processing and alter the tumor immune response in melanoma[J]. Oncogene. 2022;41(46):4983–93.CrossRefPubMedPubMedCentral Zimmerman SM, Nixon SJ, Chen PY, et al. Ezh2 mutations co-operate with Stat3 to regulate MHC class I antigen processing and alter the tumor immune response in melanoma[J]. Oncogene. 2022;41(46):4983–93.CrossRefPubMedPubMedCentral
28.
go back to reference Zhang Q, Ni Y, Wang S, et al. G6PD upregulates cyclin E1 and MMP9 to promote clear cell renal cell carcinoma progression[J]. Int J Med Sci. 2022;19(1):47–64.CrossRefPubMedPubMedCentral Zhang Q, Ni Y, Wang S, et al. G6PD upregulates cyclin E1 and MMP9 to promote clear cell renal cell carcinoma progression[J]. Int J Med Sci. 2022;19(1):47–64.CrossRefPubMedPubMedCentral
29.
go back to reference Zhu R, Liu Y, Zhou H, et al. Deubiquitinating enzyme PSMD14 promotes tumor metastasis through stabilizing SNAIL in human esophageal squamous cell carcinoma[J]. Cancer Lett. 2018;418:125–34.CrossRefPubMed Zhu R, Liu Y, Zhou H, et al. Deubiquitinating enzyme PSMD14 promotes tumor metastasis through stabilizing SNAIL in human esophageal squamous cell carcinoma[J]. Cancer Lett. 2018;418:125–34.CrossRefPubMed
31.
go back to reference Kanehisa M. Toward understanding the origin and evolution of cellular organisms[J]. Protein Science: a Publication of the Protein Society. 2019;28(11):1947–51.CrossRefPubMed Kanehisa M. Toward understanding the origin and evolution of cellular organisms[J]. Protein Science: a Publication of the Protein Society. 2019;28(11):1947–51.CrossRefPubMed
32.
go back to reference Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Res. 2023;51(D1):D587–92.CrossRefPubMed Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Res. 2023;51(D1):D587–92.CrossRefPubMed
33.
34.
go back to reference Mehraj U, Ganai RA, Macha MA, et al. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities[J]. Cell Oncol (Dordrecht). 2021;44(6):1209–29.CrossRef Mehraj U, Ganai RA, Macha MA, et al. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities[J]. Cell Oncol (Dordrecht). 2021;44(6):1209–29.CrossRef
35.
go back to reference Zhu Y-H, Zheng J-H, Jia Q-Y, et al. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment[J]. Cell Oncol (Dordrecht). 2023;46(1):17–48.CrossRef Zhu Y-H, Zheng J-H, Jia Q-Y, et al. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment[J]. Cell Oncol (Dordrecht). 2023;46(1):17–48.CrossRef
36.
go back to reference Xue W, Dong B, Wang Y, et al. A novel prognostic index of stomach adenocarcinoma based on immunogenomic landscape analysis and immunotherapy options[J]. Exp Mol Pathol. 2022;128:104832.CrossRefPubMed Xue W, Dong B, Wang Y, et al. A novel prognostic index of stomach adenocarcinoma based on immunogenomic landscape analysis and immunotherapy options[J]. Exp Mol Pathol. 2022;128:104832.CrossRefPubMed
37.
go back to reference Liu T, Zhou C, Ji J, et al. Spheroid on-demand printing and drug screening of endothelialized hepatocellular carcinoma model at different stages[J]. Biofabrication. 2023;15(4). Liu T, Zhou C, Ji J, et al. Spheroid on-demand printing and drug screening of endothelialized hepatocellular carcinoma model at different stages[J]. Biofabrication. 2023;15(4).
38.
go back to reference Wong TLM, Wong T-L, Zhou L, et al. Protein tyrosine kinase 7 (PTK7) promotes metastasis in Hepatocellular Carcinoma via SOX9 regulation and TGF-β Signaling[J]. Cell Mol Gastroenterol Hepatol. 2023;15(1):13–37.CrossRefPubMed Wong TLM, Wong T-L, Zhou L, et al. Protein tyrosine kinase 7 (PTK7) promotes metastasis in Hepatocellular Carcinoma via SOX9 regulation and TGF-β Signaling[J]. Cell Mol Gastroenterol Hepatol. 2023;15(1):13–37.CrossRefPubMed
39.
go back to reference Devan AR, Pavithran K, Nair B, et al. Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma[J]. World J Gastroenterol. 2022;28(36):5250–64.CrossRefPubMedPubMedCentral Devan AR, Pavithran K, Nair B, et al. Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma[J]. World J Gastroenterol. 2022;28(36):5250–64.CrossRefPubMedPubMedCentral
40.
go back to reference Pan B, Wang Z, Yao Y, et al. TGF-β-p-STAT1-LAIR2 axis has a “self-rescue” role for exhausted CD8 + T cells in hepatocellular carcinoma[J]. Cell Oncol (Dordrecht). 2023. Pan B, Wang Z, Yao Y, et al. TGF-β-p-STAT1-LAIR2 axis has a “self-rescue” role for exhausted CD8 + T cells in hepatocellular carcinoma[J]. Cell Oncol (Dordrecht). 2023.
41.
go back to reference Matsuda-Lennikov M, Ohigashi I, Takahama Y. Tissue-specific proteasomes in generation of MHC class I peptides and CD8 T cells[J]. Curr Opin Immunol. 2022;77:102217.CrossRefPubMedPubMedCentral Matsuda-Lennikov M, Ohigashi I, Takahama Y. Tissue-specific proteasomes in generation of MHC class I peptides and CD8 T cells[J]. Curr Opin Immunol. 2022;77:102217.CrossRefPubMedPubMedCentral
42.
go back to reference Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy[J]. Nat Rev Immunol. 2022;2:90–105. Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy[J]. Nat Rev Immunol. 2022;2:90–105.
43.
go back to reference Borden ES, Buetow KH, Wilson MA, et al. Cancer Neoantigens: Challenges and future directions for prediction, prioritization, and Validation[J]. Front Oncol. 2022;12:836821.CrossRefPubMedPubMedCentral Borden ES, Buetow KH, Wilson MA, et al. Cancer Neoantigens: Challenges and future directions for prediction, prioritization, and Validation[J]. Front Oncol. 2022;12:836821.CrossRefPubMedPubMedCentral
Metadata
Title
Cellular senescence-related genes: predicting prognosis in hepatocellular carcinoma
Authors
Weiwei Yuan
Yuanmin Xu
Zhiheng Wu
Yang Huang
Lei Meng
Shiping Dai
Songcheng Ying
Zhangming Chen
Aman Xu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11288-1

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine