Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2014

Open Access 01-12-2014 | Review

Cellular reprogramming for pancreatic β-cell regeneration: clinical potential of small molecule control

Authors: Ganesh N Pandian, Junichi Taniguchi, Hiroshi Sugiyama

Published in: Clinical and Translational Medicine | Issue 1/2014

Login to get access

Abstract

Recent scientific breakthroughs in stem cell biology suggest that a sustainable treatment approach to cure diabetes mellitus (DM) can be achieved in the near future. However, the transplantation complexities and the difficulty in obtaining the stem cells from adult cells of pancreas, liver, bone morrow and other cells is a major concern. The epoch-making strategy of transcription-factor based cellular reprogramming suggest that these barriers could be overcome, and it is possible to reprogram any cells into functional β cells. Contemporary biological and analytical techniques help us to predict the key transcription factors needed for β-cell regeneration. These β cell-specific transcription factors could be modulated with diverse reprogramming protocols. Among cellular reprogramming strategies, small molecule approach gets proclaimed to have better clinical prospects because it does not involve genetic manipulation. Several small molecules targeting certain epigenetic enzymes and/or signaling pathways have been successful in helping to induce pancreatic β-cell specification. Recently, a synthetic DNA-based small molecule triggered targeted transcriptional activation of pancreas-related genes to suggest the possibility of achieving desired cellular phenotype in a precise mode. Here, we give a brief overview of treating DM by regenerating pancreatic β-cells from various cell sources. Through a comprehensive overview of the available transcription factors, small molecules and reprogramming strategies available for pancreatic β-cell regeneration, this review compiles the current progress made towards the generation of clinically relevant insulin-producing β-cells.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ashcroft FM, Rorsman P: Diabetes mellitus and the beta cell: the last ten years. Cell 2012, 148: 1160–1171. 10.1016/j.cell.2012.02.010CrossRefPubMed Ashcroft FM, Rorsman P: Diabetes mellitus and the beta cell: the last ten years. Cell 2012, 148: 1160–1171. 10.1016/j.cell.2012.02.010CrossRefPubMed
3.
go back to reference Bluestone JA, Herold K, Eisenbarth G: Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2012, 464: 1293–1300.CrossRef Bluestone JA, Herold K, Eisenbarth G: Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2012, 464: 1293–1300.CrossRef
4.
go back to reference Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, Khunti K: Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 2007, 334: 299. 10.1136/bmj.39063.689375.55PubMedCentralCrossRefPubMed Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, Khunti K: Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 2007, 334: 299. 10.1136/bmj.39063.689375.55PubMedCentralCrossRefPubMed
5.
go back to reference Li LC, Wang Y, Carr R, Haddad CS, Li Z, Qian L, Oberholzer J, Maker AV, Wang Q, Prabhakar BS: IG20/MADD plays a critical role in glucose-induced insulin secretion. Diabetes 2013. doi: 10.2337/db13–0707 doi: 10.2337/db13-0707 Li LC, Wang Y, Carr R, Haddad CS, Li Z, Qian L, Oberholzer J, Maker AV, Wang Q, Prabhakar BS: IG20/MADD plays a critical role in glucose-induced insulin secretion. Diabetes 2013. doi: 10.2337/db13–0707 doi: 10.2337/db13-0707
6.
go back to reference Zhang C, Bao W, Rong Y, Yang H, Bowers K, Yeung E, Kiely M: Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update 2013, 19: 376–390. 10.1093/humupd/dmt013PubMedCentralCrossRefPubMed Zhang C, Bao W, Rong Y, Yang H, Bowers K, Yeung E, Kiely M: Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update 2013, 19: 376–390. 10.1093/humupd/dmt013PubMedCentralCrossRefPubMed
7.
go back to reference Soejitno A, Prayudi PK: The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2011, 2: 197–210.PubMedCentralPubMed Soejitno A, Prayudi PK: The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2011, 2: 197–210.PubMedCentralPubMed
8.
go back to reference Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131: 861–872. 10.1016/j.cell.2007.11.019CrossRefPubMed Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131: 861–872. 10.1016/j.cell.2007.11.019CrossRefPubMed
9.
go back to reference Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D, Mercola M, Oshima RG, Willerson JT, Potaman VN, Schwartz RJ: Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA 2012, 109: 13016–13021. 10.1073/pnas.1120299109PubMedCentralCrossRefPubMed Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D, Mercola M, Oshima RG, Willerson JT, Potaman VN, Schwartz RJ: Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA 2012, 109: 13016–13021. 10.1073/pnas.1120299109PubMedCentralCrossRefPubMed
10.
go back to reference Kogiso T, Nagahara H, Otsuka M, Shiratori K, Dowdy SF: Transdifferentiation of human fibroblasts into hepatocyte-like cells by defined transcriptional factors. Hepatol Int 2013, 7: 937–944. 10.1007/s12072-013-9432-5CrossRefPubMed Kogiso T, Nagahara H, Otsuka M, Shiratori K, Dowdy SF: Transdifferentiation of human fibroblasts into hepatocyte-like cells by defined transcriptional factors. Hepatol Int 2013, 7: 937–944. 10.1007/s12072-013-9432-5CrossRefPubMed
11.
go back to reference Wang YH, Wei KY, Smolke CD: Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng. 2013, 4: 69–102. 10.1146/annurev-chembioeng-061312-103351PubMedCentralCrossRefPubMed Wang YH, Wei KY, Smolke CD: Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng. 2013, 4: 69–102. 10.1146/annurev-chembioeng-061312-103351PubMedCentralCrossRefPubMed
12.
go back to reference Pandian GN, Taniguchi J, Junetha S, Sato S, Han L, Saha A, Anandhakumar C, Bando T, Nagase H, Vaijayanthi T, Taylor RD, Sugiyama H: Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Sci Rep 2014, 4: e3843.CrossRef Pandian GN, Taniguchi J, Junetha S, Sato S, Han L, Saha A, Anandhakumar C, Bando T, Nagase H, Vaijayanthi T, Taylor RD, Sugiyama H: Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Sci Rep 2014, 4: e3843.CrossRef
13.
go back to reference Liu X, Wang Y, Li Y, Pei X: Research status and prospect of stem cells in the treatment of diabetes mellitus. Sci China Life Sci 2013, 56: 306–312. 10.1007/s11427-013-4469-1CrossRefPubMed Liu X, Wang Y, Li Y, Pei X: Research status and prospect of stem cells in the treatment of diabetes mellitus. Sci China Life Sci 2013, 56: 306–312. 10.1007/s11427-013-4469-1CrossRefPubMed
14.
go back to reference Harrison C: Obesity and diabetes: two-for-one strike at incretins. Nat Rev Drug Discov 2014, 13: 18–19.CrossRefPubMed Harrison C: Obesity and diabetes: two-for-one strike at incretins. Nat Rev Drug Discov 2014, 13: 18–19.CrossRefPubMed
15.
16.
go back to reference Efrat S: Beta-cell replacement for insulin- dependent diabetes mellitus. Adv Drug Deliv Rev 2008, 60: 114–123. 10.1016/j.addr.2007.08.033CrossRefPubMed Efrat S: Beta-cell replacement for insulin- dependent diabetes mellitus. Adv Drug Deliv Rev 2008, 60: 114–123. 10.1016/j.addr.2007.08.033CrossRefPubMed
17.
go back to reference Gallwitz B: Managing the b-cell with GLP-1 in type 2 diabetes. Br J Diabetes Vasc Dis 2008, 8: S19-S25. 10.1177/1474651408100522CrossRef Gallwitz B: Managing the b-cell with GLP-1 in type 2 diabetes. Br J Diabetes Vasc Dis 2008, 8: S19-S25. 10.1177/1474651408100522CrossRef
18.
go back to reference Yoshida K, Hasebe Y, Takahashi S, Sato K, Anzai J: Layer-by-layer deposited nano- and micro-assemblies for insulin delivery: a review. Mater Sci Eng C Mater Biol Appl 2014, 34: 384–392.CrossRefPubMed Yoshida K, Hasebe Y, Takahashi S, Sato K, Anzai J: Layer-by-layer deposited nano- and micro-assemblies for insulin delivery: a review. Mater Sci Eng C Mater Biol Appl 2014, 34: 384–392.CrossRefPubMed
20.
go back to reference Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R, Dai F, Lee S, Ahrens R, Fraser PE, Wheeler MB, van der Kooy D: The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 2011, 8: 281–293. 10.1016/j.stem.2011.01.015CrossRefPubMed Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R, Dai F, Lee S, Ahrens R, Fraser PE, Wheeler MB, van der Kooy D: The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 2011, 8: 281–293. 10.1016/j.stem.2011.01.015CrossRefPubMed
21.
go back to reference Lima MJ, Muir KR, Docherty HM, Drummond R, McGowan NWA, Forbes S, Heremans Y, Houbracken I, Ross JA, Forbes SJ, Ravassard P, Heimberg H, Casey J, Docherty K: Suppression of epithelial-to-mesenchymal transitioning enhances ex vivo reprogramming of human exocrine pancreatic tissue toward functional insulin-producing beta-like cells. Diabetes 2013, 62: 2821–2833. 10.2337/db12-1256PubMedCentralCrossRefPubMed Lima MJ, Muir KR, Docherty HM, Drummond R, McGowan NWA, Forbes S, Heremans Y, Houbracken I, Ross JA, Forbes SJ, Ravassard P, Heimberg H, Casey J, Docherty K: Suppression of epithelial-to-mesenchymal transitioning enhances ex vivo reprogramming of human exocrine pancreatic tissue toward functional insulin-producing beta-like cells. Diabetes 2013, 62: 2821–2833. 10.2337/db12-1256PubMedCentralCrossRefPubMed
23.
go back to reference Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M: Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 2003, 21: 763–770. 10.1038/nbt841CrossRefPubMed Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M: Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 2003, 21: 763–770. 10.1038/nbt841CrossRefPubMed
24.
go back to reference Kim SJ, Choi YS, Ko ES, Lim SM, Lee CW, Kim DI: Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. J Biosci Bioeng 2012, 113: 771–777. 10.1016/j.jbiosc.2012.02.007CrossRefPubMed Kim SJ, Choi YS, Ko ES, Lim SM, Lee CW, Kim DI: Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. J Biosci Bioeng 2012, 113: 771–777. 10.1016/j.jbiosc.2012.02.007CrossRefPubMed
25.
go back to reference Ho JH, Tseng TC, Ma WH, Ong WK, Chen YF, Chen MH, Lin MW, Hong CY, Lee OK: Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozocin-induced diabetic mice. Cell Transplant 2012, 21: 997–1009. 10.3727/096368911X603611CrossRefPubMed Ho JH, Tseng TC, Ma WH, Ong WK, Chen YF, Chen MH, Lin MW, Hong CY, Lee OK: Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozocin-induced diabetic mice. Cell Transplant 2012, 21: 997–1009. 10.3727/096368911X603611CrossRefPubMed
26.
27.
go back to reference Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H, Chan L: Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 2009, 16: 358–373. 10.1016/j.devcel.2009.01.012PubMedCentralCrossRefPubMed Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H, Chan L: Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 2009, 16: 358–373. 10.1016/j.devcel.2009.01.012PubMedCentralCrossRefPubMed
28.
go back to reference Brolén GK, Heins N, Edsbagge J, Semb H: Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing beta-cell-like cells. Diabetes 2005, 54: 2867–2874. 10.2337/diabetes.54.10.2867CrossRefPubMed Brolén GK, Heins N, Edsbagge J, Semb H: Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing beta-cell-like cells. Diabetes 2005, 54: 2867–2874. 10.2337/diabetes.54.10.2867CrossRefPubMed
29.
go back to reference Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008, 26: 443–452. 10.1038/nbt1393CrossRefPubMed Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008, 26: 443–452. 10.1038/nbt1393CrossRefPubMed
30.
go back to reference Wu YL, Pandian GN, Ding YP, Zhang W, Tanaka Y, Sugiyama H: Clinical grade iPS Cells: need for versatile small molecules and optimal cell sources. Chem Biol 2013, 20: 1311–1322. 10.1016/j.chembiol.2013.09.016CrossRefPubMed Wu YL, Pandian GN, Ding YP, Zhang W, Tanaka Y, Sugiyama H: Clinical grade iPS Cells: need for versatile small molecules and optimal cell sources. Chem Biol 2013, 20: 1311–1322. 10.1016/j.chembiol.2013.09.016CrossRefPubMed
31.
go back to reference Pandian GN, Sugiyama H: Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J 2012, 7: 798–809. 10.1002/biot.201100361CrossRefPubMed Pandian GN, Sugiyama H: Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J 2012, 7: 798–809. 10.1002/biot.201100361CrossRefPubMed
32.
go back to reference Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y: Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008, 283: 31601–31607. 10.1074/jbc.M806597200CrossRefPubMed Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y: Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008, 283: 31601–31607. 10.1074/jbc.M806597200CrossRefPubMed
33.
go back to reference Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA: Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009, 106: 15768–15773. 10.1073/pnas.0906894106PubMedCentralCrossRefPubMed Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA: Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009, 106: 15768–15773. 10.1073/pnas.0906894106PubMedCentralCrossRefPubMed
34.
go back to reference Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H: Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009, 19: 429–438. 10.1038/cr.2009.28CrossRefPubMed Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H: Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009, 19: 429–438. 10.1038/cr.2009.28CrossRefPubMed
35.
go back to reference Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y: Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA 2010, 107: 13426–13431. 10.1073/pnas.1007884107PubMedCentralCrossRefPubMed Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y: Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA 2010, 107: 13426–13431. 10.1073/pnas.1007884107PubMedCentralCrossRefPubMed
36.
go back to reference Sui L, Mfopou JK, Chen B, Sermon K, Bouwens L: Transplantation of human embryonic stem cell-derived pancreatic endoderm reveals a site-specific survival, growth and differentiation. Cell Transplant 2013, 22: 821–830. 10.3727/096368912X636812CrossRefPubMed Sui L, Mfopou JK, Chen B, Sermon K, Bouwens L: Transplantation of human embryonic stem cell-derived pancreatic endoderm reveals a site-specific survival, growth and differentiation. Cell Transplant 2013, 22: 821–830. 10.3727/096368912X636812CrossRefPubMed
37.
go back to reference De Angelis MT, Russo F, D'Angelo F, Federico A, Gemei M, Del Vecchio L, Ceccarelli M, De Felice M, Falco G: Novel pancreas organogenesis markers refine the pancreatic differentiation roadmap of embryonic stem cells. Stem Cell Rev 2014. 10.1007/s12015–013–9489–5 10.1007/s12015-013-9489-5 De Angelis MT, Russo F, D'Angelo F, Federico A, Gemei M, Del Vecchio L, Ceccarelli M, De Felice M, Falco G: Novel pancreas organogenesis markers refine the pancreatic differentiation roadmap of embryonic stem cells. Stem Cell Rev 2014. 10.1007/s12015–013–9489–5 10.1007/s12015-013-9489-5
38.
go back to reference Cano DA, Soria B, Martin F, Rojas A: Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci 2013. doi:10.1007/s00018–013–1510–2. doi:10.1007/s00018-013-1510-2. Cano DA, Soria B, Martin F, Rojas A: Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci 2013. doi:10.1007/s00018–013–1510–2. doi:10.1007/s00018-013-1510-2.
39.
go back to reference Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, et al.: Systematic localization of common disease-associated variation in regulatory DNA. Science 2012, 337: 1190–1195. 10.1126/science.1222794PubMedCentralCrossRefPubMed Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, et al.: Systematic localization of common disease-associated variation in regulatory DNA. Science 2012, 337: 1190–1195. 10.1126/science.1222794PubMedCentralCrossRefPubMed
40.
go back to reference McKinnon CM, Docherty K: Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia 2001, 44: 1203–1214. 10.1007/s001250100628CrossRefPubMed McKinnon CM, Docherty K: Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia 2001, 44: 1203–1214. 10.1007/s001250100628CrossRefPubMed
41.
go back to reference Masui T, Swift GH, Hale MA, Meredith DM, Johnson JE, Macdonald RJ: Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol Cell Biol 2008, 28: 5458–5468. 10.1128/MCB.00549-08PubMedCentralCrossRefPubMed Masui T, Swift GH, Hale MA, Meredith DM, Johnson JE, Macdonald RJ: Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol Cell Biol 2008, 28: 5458–5468. 10.1128/MCB.00549-08PubMedCentralCrossRefPubMed
42.
go back to reference Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L: Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Investig 2012, 122: 3516–3528. 10.1172/JCI63352PubMedCentralCrossRefPubMed Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L: Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Investig 2012, 122: 3516–3528. 10.1172/JCI63352PubMedCentralCrossRefPubMed
43.
go back to reference Gao N, LeLay J, Vatamaniuk MZ, Rieck S, Friedman JR, Kaestner KH: Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 2008, 22: 3435–3448. 10.1101/gad.1752608PubMedCentralCrossRefPubMed Gao N, LeLay J, Vatamaniuk MZ, Rieck S, Friedman JR, Kaestner KH: Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 2008, 22: 3435–3448. 10.1101/gad.1752608PubMedCentralCrossRefPubMed
44.
go back to reference Poll AV, Pierreux CE, Lokmane L, Haumaitre C, Achouri Y, Jacquemin P, Rousseau GG, Cereghini S, Lemaigre FP: A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes 2006, 55: 61–69. 10.2337/diabetes.55.01.06.db05-0681CrossRefPubMed Poll AV, Pierreux CE, Lokmane L, Haumaitre C, Achouri Y, Jacquemin P, Rousseau GG, Cereghini S, Lemaigre FP: A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes 2006, 55: 61–69. 10.2337/diabetes.55.01.06.db05-0681CrossRefPubMed
45.
go back to reference Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS: Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA 2007, 104: 10500–10505. 10.1073/pnas.0704054104PubMedCentralCrossRefPubMed Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS: Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA 2007, 104: 10500–10505. 10.1073/pnas.0704054104PubMedCentralCrossRefPubMed
46.
go back to reference Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, Schwitzgebel V, Hayes-Jordan A, German M: Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 2000, 127: 5533–5540.PubMed Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, Schwitzgebel V, Hayes-Jordan A, German M: Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 2000, 127: 5533–5540.PubMed
47.
go back to reference Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H: Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 1997, 385: 257–260. 10.1038/385257a0CrossRefPubMed Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H: Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 1997, 385: 257–260. 10.1038/385257a0CrossRefPubMed
48.
go back to reference Itkin-Ansari P, Marcora E, Geron I, Tyrberg B, Demeterco C, Hao E, Padilla C, Ratineau C, Leiter A, Lee JE, Levine F: NeuroD1 in the endocrine pancreas: localization and dual function as an activator and repressor. Dev Dyn 2005, 233: 946–953. 10.1002/dvdy.20443CrossRefPubMed Itkin-Ansari P, Marcora E, Geron I, Tyrberg B, Demeterco C, Hao E, Padilla C, Ratineau C, Leiter A, Lee JE, Levine F: NeuroD1 in the endocrine pancreas: localization and dual function as an activator and repressor. Dev Dyn 2005, 233: 946–953. 10.1002/dvdy.20443CrossRefPubMed
49.
go back to reference Cerf ME, Muller CJ, Du Toit DF, Louw J, Wolfe-Coote SA: Transcription factors, pancreatic development, and beta-cell maintenance. Biochem Biophys Res Commun 2005, 326: 699–702. 10.1016/j.bbrc.2004.10.217CrossRefPubMed Cerf ME, Muller CJ, Du Toit DF, Louw J, Wolfe-Coote SA: Transcription factors, pancreatic development, and beta-cell maintenance. Biochem Biophys Res Commun 2005, 326: 699–702. 10.1016/j.bbrc.2004.10.217CrossRefPubMed
50.
go back to reference Gradwohl G, Dierich A, LeMeur M, Guillemot F: Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000, 97: 1607–1611. 10.1073/pnas.97.4.1607PubMedCentralCrossRefPubMed Gradwohl G, Dierich A, LeMeur M, Guillemot F: Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000, 97: 1607–1611. 10.1073/pnas.97.4.1607PubMedCentralCrossRefPubMed
51.
go back to reference Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, Patch AM, Grabs R, Wang J, Lynn FC, Miyatsuka T, Mitchell J, Seerke R, Désir J, Vanden Eijnden S, Abramowicz M, Kacet N, Weill J, Renard ME, Gentile M, Hansen I, Dewar K, Hattersley AT, Wang R, Wilson ME, Johnson JD, Polychronakos C, German MS: Rfx6 directs islet formation and insulin production in mice and humans. Nature 2010, 463: 775–780. 10.1038/nature08748PubMedCentralCrossRefPubMed Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, Patch AM, Grabs R, Wang J, Lynn FC, Miyatsuka T, Mitchell J, Seerke R, Désir J, Vanden Eijnden S, Abramowicz M, Kacet N, Weill J, Renard ME, Gentile M, Hansen I, Dewar K, Hattersley AT, Wang R, Wilson ME, Johnson JD, Polychronakos C, German MS: Rfx6 directs islet formation and insulin production in mice and humans. Nature 2010, 463: 775–780. 10.1038/nature08748PubMedCentralCrossRefPubMed
52.
go back to reference Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S, Sharma A: A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol 2006, 293: 526–539. 10.1016/j.ydbio.2006.02.028PubMedCentralCrossRefPubMed Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S, Sharma A: A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol 2006, 293: 526–539. 10.1016/j.ydbio.2006.02.028PubMedCentralCrossRefPubMed
53.
go back to reference Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A: Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000, 6: 568–572. 10.1038/75050CrossRefPubMed Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A: Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000, 6: 568–572. 10.1038/75050CrossRefPubMed
54.
go back to reference Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y: PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 2005, 54: 1009–1022. 10.2337/diabetes.54.4.1009CrossRefPubMed Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y: PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 2005, 54: 1009–1022. 10.2337/diabetes.54.4.1009CrossRefPubMed
55.
go back to reference Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, Eventov-Friedman S, Barshack I, Goldberg I, Pri-Chen S, Ben-Dor L, Polak-Charcon S, Karasik A, Shimon I, Mor E, Ferber S: Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 2005, 102: 7964–7969. 10.1073/pnas.0405277102PubMedCentralCrossRefPubMed Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, Eventov-Friedman S, Barshack I, Goldberg I, Pri-Chen S, Ben-Dor L, Polak-Charcon S, Karasik A, Shimon I, Mor E, Ferber S: Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 2005, 102: 7964–7969. 10.1073/pnas.0405277102PubMedCentralCrossRefPubMed
56.
go back to reference Wang AY, Ehrhardt A, Xu H, Kay MA: Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 2007, 15: 255–263. 10.1038/sj.mt.6300032CrossRefPubMed Wang AY, Ehrhardt A, Xu H, Kay MA: Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 2007, 15: 255–263. 10.1038/sj.mt.6300032CrossRefPubMed
57.
go back to reference Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008, 455: 627–632. 10.1038/nature07314CrossRefPubMed Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008, 455: 627–632. 10.1038/nature07314CrossRefPubMed
58.
go back to reference Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A: The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009, 138: 449–462. 10.1016/j.cell.2009.05.035PubMedCentralCrossRefPubMed Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A: The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009, 138: 449–462. 10.1016/j.cell.2009.05.035PubMedCentralCrossRefPubMed
59.
go back to reference Kajiyama H, Hamazaki TS, Tokuhara M, Masui S, Okabayashi K, Ohnuma K, Yabe S, Yasuda K, Ishiura S, Okochi H, Asashima M: Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol 2010, 54: 699–705. 10.1387/ijdb.092953hkCrossRefPubMed Kajiyama H, Hamazaki TS, Tokuhara M, Masui S, Okabayashi K, Ohnuma K, Yabe S, Yasuda K, Ishiura S, Okochi H, Asashima M: Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol 2010, 54: 699–705. 10.1387/ijdb.092953hkCrossRefPubMed
60.
go back to reference Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013, 341: 651–654. 10.1126/science.1239278CrossRefPubMed Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013, 341: 651–654. 10.1126/science.1239278CrossRefPubMed
61.
go back to reference Masuda S, Wu J, Hishida T, Pandian GN, Sugiyama H, Izpisua Belmonte JC: Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Mol Cell Biol 2013, 5: 354–355. 10.1093/jmcb/mjt034CrossRefPubMed Masuda S, Wu J, Hishida T, Pandian GN, Sugiyama H, Izpisua Belmonte JC: Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Mol Cell Biol 2013, 5: 354–355. 10.1093/jmcb/mjt034CrossRefPubMed
62.
go back to reference Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL, Melton D: A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 2009, 5: 258–265. 10.1038/nchembio.154CrossRefPubMed Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL, Melton D: A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 2009, 5: 258–265. 10.1038/nchembio.154CrossRefPubMed
63.
go back to reference Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA: Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 2009, 4: 348–358. 10.1016/j.stem.2009.01.014PubMedCentralCrossRefPubMed Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA: Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 2009, 4: 348–358. 10.1016/j.stem.2009.01.014PubMedCentralCrossRefPubMed
64.
go back to reference Cai J, Yu C, Liu Y, Chen S, Guo Y, Yong J, Lu W, Ding M, Deng H: Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells. J Mol Cell Biol 2010, 2: 50–60. 10.1093/jmcb/mjp037CrossRefPubMed Cai J, Yu C, Liu Y, Chen S, Guo Y, Yong J, Lu W, Ding M, Deng H: Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells. J Mol Cell Biol 2010, 2: 50–60. 10.1093/jmcb/mjp037CrossRefPubMed
65.
go back to reference Oström M, Loffler KA, Edfalk S, Selander L, Dahl U, Ricordi C, Jeon J, Correa-Medina M, Diez J, Edlund H: Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS One 2008, 3: 2841. 10.1371/journal.pone.0002841CrossRef Oström M, Loffler KA, Edfalk S, Selander L, Dahl U, Ricordi C, Jeon J, Correa-Medina M, Diez J, Edlund H: Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS One 2008, 3: 2841. 10.1371/journal.pone.0002841CrossRef
66.
go back to reference Dadheech N, Soni S, Srivastava A, Dadheech S, Gupta S, Gopurappilly R, Bhonde RR, Gupta S: A small molecule Swertisin from Enicostemma littorale differentiates NIH3T3 cells into islet-like clusters and restores Normoglycemia upon transplantation in diabetic balb/c mice. Evid Based Complement Alternat Med 2013, 2013: 280392.PubMedCentralPubMed Dadheech N, Soni S, Srivastava A, Dadheech S, Gupta S, Gopurappilly R, Bhonde RR, Gupta S: A small molecule Swertisin from Enicostemma littorale differentiates NIH3T3 cells into islet-like clusters and restores Normoglycemia upon transplantation in diabetic balb/c mice. Evid Based Complement Alternat Med 2013, 2013: 280392.PubMedCentralPubMed
67.
go back to reference Shen W, Tremblay MS, Deshmukh VA, Wang W, Filippi CM, Harb G, Zhang YQ, Kamireddy A, Baaten JE, Jin Q, Wu T, Swoboda JG, Cho CY, Li J, Laffitte BA, McNamara P, Glynne R, Wu X, Herman AE, Schultz PG: Small-molecule inducer of β cell proliferation identified by high-throughput screening. J Am Chem Soc 2013, 135: 1669–1672. 10.1021/ja309304mCrossRefPubMed Shen W, Tremblay MS, Deshmukh VA, Wang W, Filippi CM, Harb G, Zhang YQ, Kamireddy A, Baaten JE, Jin Q, Wu T, Swoboda JG, Cho CY, Li J, Laffitte BA, McNamara P, Glynne R, Wu X, Herman AE, Schultz PG: Small-molecule inducer of β cell proliferation identified by high-throughput screening. J Am Chem Soc 2013, 135: 1669–1672. 10.1021/ja309304mCrossRefPubMed
68.
go back to reference Yuan Y, Hartland K, Boskovic Z, Wang Y, Walpita D, Lysy PA, Zhong C, Young DW, Kim YK, Tolliday NJ, Sokal EM, Schreiber SL, Wagner BK: A small-molecule inducer of PDX1 expression identified by high-throughput screening. Chem Biol 2013, 20: 1513–1522. 10.1016/j.chembiol.2013.10.013PubMedCentralCrossRefPubMed Yuan Y, Hartland K, Boskovic Z, Wang Y, Walpita D, Lysy PA, Zhong C, Young DW, Kim YK, Tolliday NJ, Sokal EM, Schreiber SL, Wagner BK: A small-molecule inducer of PDX1 expression identified by high-throughput screening. Chem Biol 2013, 20: 1513–1522. 10.1016/j.chembiol.2013.10.013PubMedCentralCrossRefPubMed
69.
go back to reference Lefebvre B, Belaich S, Longue J, Vandewalle B, Oberholzer J, Gmyr V, Pattou F, Kerr-Conte J: 5'-AZA induces Ngn3 expression and endocrine differentiation in the PANC-1 human ductal cell line. Biochem Biophys Res Commun 2010, 391: 305–309. 10.1016/j.bbrc.2009.11.054CrossRefPubMed Lefebvre B, Belaich S, Longue J, Vandewalle B, Oberholzer J, Gmyr V, Pattou F, Kerr-Conte J: 5'-AZA induces Ngn3 expression and endocrine differentiation in the PANC-1 human ductal cell line. Biochem Biophys Res Commun 2010, 391: 305–309. 10.1016/j.bbrc.2009.11.054CrossRefPubMed
70.
go back to reference Liu J, Liu Y, Wang H, Hao H, Han Q, Shen J, Shi J, Li C, Mu Y, Han W: Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules. Sci Rep 2013, 3: 1185.PubMedCentralPubMed Liu J, Liu Y, Wang H, Hao H, Han Q, Shen J, Shi J, Li C, Mu Y, Han W: Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules. Sci Rep 2013, 3: 1185.PubMedCentralPubMed
71.
go back to reference Ohtsuki A, Kimura M, Minoshima M, Suzuki T, Ikeda M, Bando T, Nagase H, Shinohara K, Sugiyama H: Synthesis and properties of PI polyamide–SAHA conjugate. Tetrahedron Lett 2009, 50: 7288–7292. 10.1016/j.tetlet.2009.10.034CrossRef Ohtsuki A, Kimura M, Minoshima M, Suzuki T, Ikeda M, Bando T, Nagase H, Shinohara K, Sugiyama H: Synthesis and properties of PI polyamide–SAHA conjugate. Tetrahedron Lett 2009, 50: 7288–7292. 10.1016/j.tetlet.2009.10.034CrossRef
72.
go back to reference Pandian GN, Shinohara K, Ohtsuki A, Nakano Y, Masafumi M, Bando T, Nagase H, Yamada Y, Watanabe A, Terada N, Sato S, Morinaga H, Sugiyama H: Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts. ChemBioChem 2011, 12: 2822–2828. 10.1002/cbic.201100597CrossRefPubMed Pandian GN, Shinohara K, Ohtsuki A, Nakano Y, Masafumi M, Bando T, Nagase H, Yamada Y, Watanabe A, Terada N, Sato S, Morinaga H, Sugiyama H: Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts. ChemBioChem 2011, 12: 2822–2828. 10.1002/cbic.201100597CrossRefPubMed
73.
go back to reference Pandian GN, Ohtsuki A, Bando T, Sato S, Hashiya K, Sugiyama H: Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 2012, 20: 2656–2660. 10.1016/j.bmc.2012.02.032CrossRefPubMed Pandian GN, Ohtsuki A, Bando T, Sato S, Hashiya K, Sugiyama H: Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 2012, 20: 2656–2660. 10.1016/j.bmc.2012.02.032CrossRefPubMed
74.
go back to reference Pandian GN, Nakano Y, Sato S, Morinaga H, Bando T, Nagase H, Sugiyama H: A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep 2012, 2: 544.PubMedCentralCrossRefPubMed Pandian GN, Nakano Y, Sato S, Morinaga H, Bando T, Nagase H, Sugiyama H: A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep 2012, 2: 544.PubMedCentralCrossRefPubMed
75.
go back to reference Han L, Pandian GN, Junetha S, Sato S, Anandhakumar C, Taniguchi J, Saha A, Bando T, Nagase H, Sugiyama H: A synthetic small molecule for targeted transcriptional activation of germ cell genes in a human somatic cell. Angew Chem Int Ed Engl 2013, 52: 13410–13413. 10.1002/anie.201306766CrossRefPubMed Han L, Pandian GN, Junetha S, Sato S, Anandhakumar C, Taniguchi J, Saha A, Bando T, Nagase H, Sugiyama H: A synthetic small molecule for targeted transcriptional activation of germ cell genes in a human somatic cell. Angew Chem Int Ed Engl 2013, 52: 13410–13413. 10.1002/anie.201306766CrossRefPubMed
76.
go back to reference Persson K, Pacini G, Sundler F, Ahrén B: Islet function phenotype in gastrin-releasing peptide receptor gene-deficient mice. Endocrinology 2002, 143: 3717–3726. 10.1210/en.2002-220371CrossRefPubMed Persson K, Pacini G, Sundler F, Ahrén B: Islet function phenotype in gastrin-releasing peptide receptor gene-deficient mice. Endocrinology 2002, 143: 3717–3726. 10.1210/en.2002-220371CrossRefPubMed
77.
go back to reference Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, Deng H: CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells 2011, 29: 609–617. 10.1002/stem.608CrossRefPubMed Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, Deng H: CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells 2011, 29: 609–617. 10.1002/stem.608CrossRefPubMed
78.
go back to reference Thandavarayan RA, Giridharan VV, Sari FR, Arumugam S, Veeraveedu PT, Pandian GN, Palaniyandi SS, Ma M, Suzuki K, Gurusamy N, Watanabe K: Depletion of 14–3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-ĸB signaling pathways after streptozotocin-induced diabetes mellitus. Cell Physiol Biochem 2011, 28: 911–922. 10.1159/000335805CrossRefPubMed Thandavarayan RA, Giridharan VV, Sari FR, Arumugam S, Veeraveedu PT, Pandian GN, Palaniyandi SS, Ma M, Suzuki K, Gurusamy N, Watanabe K: Depletion of 14–3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-ĸB signaling pathways after streptozotocin-induced diabetes mellitus. Cell Physiol Biochem 2011, 28: 911–922. 10.1159/000335805CrossRefPubMed
79.
80.
go back to reference Vaijayanthi T, Bando T, Hashiya K, Pandian GN, Sugiyama H: Design of a new fluorescent probe: pyrrole/imidazole hairpin polyamides with pyrene conjugation at their γ-turn. Bioorg Med Chem 2013, 21: 852–855. 10.1016/j.bmc.2012.12.018CrossRefPubMed Vaijayanthi T, Bando T, Hashiya K, Pandian GN, Sugiyama H: Design of a new fluorescent probe: pyrrole/imidazole hairpin polyamides with pyrene conjugation at their γ-turn. Bioorg Med Chem 2013, 21: 852–855. 10.1016/j.bmc.2012.12.018CrossRefPubMed
81.
go back to reference Vaijayanthi T, Bando T, Pandian GN, Sugiyama H: Progress and prospects of pyrrole-imidazole polyamide-fluorophore conjugates as sequence-selective DNA probes. Chembiochem 2012, 13: 2170–2185. 10.1002/cbic.201200451CrossRefPubMed Vaijayanthi T, Bando T, Pandian GN, Sugiyama H: Progress and prospects of pyrrole-imidazole polyamide-fluorophore conjugates as sequence-selective DNA probes. Chembiochem 2012, 13: 2170–2185. 10.1002/cbic.201200451CrossRefPubMed
82.
go back to reference Kashiwazaki G, Bando T, Yoshidome T, Masui S, Takagaki T, Hashiya K, Pandian GN, Yasuoka J, Akiyoshi K, Sugiyama H: Synthesis and biological properties of highly sequence-specific-alkylating N-methylpyrrole–N-methylimidazole polyamide conjugates. J Med Chem 2057–2066, 2012: 55. Kashiwazaki G, Bando T, Yoshidome T, Masui S, Takagaki T, Hashiya K, Pandian GN, Yasuoka J, Akiyoshi K, Sugiyama H: Synthesis and biological properties of highly sequence-specific-alkylating N-methylpyrrole–N-methylimidazole polyamide conjugates. J Med Chem 2057–2066, 2012: 55.
83.
go back to reference Saha A, Pandian GN, Sato S, Taniguchi J, Hashiya K, Bando T, Sugiyama H: Synthesis and biological evaluation of a targeted DNA-binding transcriptional activator with HDAC8 inhibitory activity. Bioorg Med Chem 2013, 21: 4201–4209. 10.1016/j.bmc.2013.05.002CrossRefPubMed Saha A, Pandian GN, Sato S, Taniguchi J, Hashiya K, Bando T, Sugiyama H: Synthesis and biological evaluation of a targeted DNA-binding transcriptional activator with HDAC8 inhibitory activity. Bioorg Med Chem 2013, 21: 4201–4209. 10.1016/j.bmc.2013.05.002CrossRefPubMed
84.
go back to reference Trauger JW, Baird EE, Dervan PB: Recognition of 16 base pairs in the minor groove of DNA by a pyrrole-imidazole polyamide dimer. J Am Chem Soc 1998, 120: 3534–3535. 10.1021/ja9800378CrossRef Trauger JW, Baird EE, Dervan PB: Recognition of 16 base pairs in the minor groove of DNA by a pyrrole-imidazole polyamide dimer. J Am Chem Soc 1998, 120: 3534–3535. 10.1021/ja9800378CrossRef
85.
go back to reference Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ: Epigenetic memory in induced pluripotent stem cells. Nature 2010, 467: 285–290. 10.1038/nature09342PubMedCentralCrossRefPubMed Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ: Epigenetic memory in induced pluripotent stem cells. Nature 2010, 467: 285–290. 10.1038/nature09342PubMedCentralCrossRefPubMed
86.
go back to reference Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB, Lander ES, Armstrong SA, Daley GQ: Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012, 483: 598–602. 10.1038/nature10953PubMedCentralCrossRefPubMed Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB, Lander ES, Armstrong SA, Daley GQ: Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012, 483: 598–602. 10.1038/nature10953PubMedCentralCrossRefPubMed
88.
go back to reference Pandian GN, Sugiyama H: Strategies to modulate heritable epigenetic defects in cellular machinery: lessons from nature. Pharmaceuticals 2012, 6: 1–24. 10.3390/ph6010001PubMedCentralCrossRefPubMed Pandian GN, Sugiyama H: Strategies to modulate heritable epigenetic defects in cellular machinery: lessons from nature. Pharmaceuticals 2012, 6: 1–24. 10.3390/ph6010001PubMedCentralCrossRefPubMed
89.
go back to reference Ben-David U, Gan QF, Golan-Lev T, Arora P, Yanuka O, Oren YS, Leikin-Frenkel A, Graf M, Garippa R, Boehringer M, Gromo G, Benvenisty N: Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 2013, 12: 167–179. 10.1016/j.stem.2012.11.015CrossRefPubMed Ben-David U, Gan QF, Golan-Lev T, Arora P, Yanuka O, Oren YS, Leikin-Frenkel A, Graf M, Garippa R, Boehringer M, Gromo G, Benvenisty N: Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 2013, 12: 167–179. 10.1016/j.stem.2012.11.015CrossRefPubMed
Metadata
Title
Cellular reprogramming for pancreatic β-cell regeneration: clinical potential of small molecule control
Authors
Ganesh N Pandian
Junichi Taniguchi
Hiroshi Sugiyama
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2014
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/2001-1326-3-6

Other articles of this Issue 1/2014

Clinical and Translational Medicine 1/2014 Go to the issue