Skip to main content
Top
Published in: Lasers in Medical Science 5/2016

01-07-2016 | Original Article

Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser

Authors: Larissa Alexsandra da Silva Neto Trajano, Camila Luna da Silva, Simone Nunes de Carvalho, Erika Cortez, André Luiz Mencalha, Adenilson de Souza da Fonseca, Ana Carolina Stumbo

Published in: Lasers in Medical Science | Issue 5/2016

Login to get access

Abstract

Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm2) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.
Literature
1.
go back to reference Prisk V, Huard J (2003) Muscle injuries and repair: the role of prostaglandins and inflammation. Histol Histopathol 18:1243–1256PubMed Prisk V, Huard J (2003) Muscle injuries and repair: the role of prostaglandins and inflammation. Histol Histopathol 18:1243–1256PubMed
2.
go back to reference Filippin LI, Moreira AJ, Marroni NP, Xavier RM (2009) Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 21:157–163CrossRefPubMed Filippin LI, Moreira AJ, Marroni NP, Xavier RM (2009) Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 21:157–163CrossRefPubMed
3.
go back to reference Rola P, Doroszko A, Derkacz A (2014) The Use of Low-Level Energy Laser Radiation in Basic and Clinical Research. Adv Clin Exp Med 23:835–842CrossRefPubMed Rola P, Doroszko A, Derkacz A (2014) The Use of Low-Level Energy Laser Radiation in Basic and Clinical Research. Adv Clin Exp Med 23:835–842CrossRefPubMed
4.
go back to reference de Freitas CE, Bertaglia RS, Vechetti Júnior IJ, Mareco EA, Salomão RA, de Paula TG, Nai GA, Carvalho RF, Pacagnelli FL, Dal-Pai-Silva M (2015) High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling. Photochem Photobiol 91(4):957–965CrossRefPubMed de Freitas CE, Bertaglia RS, Vechetti Júnior IJ, Mareco EA, Salomão RA, de Paula TG, Nai GA, Carvalho RF, Pacagnelli FL, Dal-Pai-Silva M (2015) High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling. Photochem Photobiol 91(4):957–965CrossRefPubMed
5.
go back to reference Alves AN, Fernandes KP, Melo CA, Yamaguchi RY, França CM, Teixeira DF, Bussadori SK, Nunes FD, Mesquita-Ferrari RA (2013) Modulating effect of low level-laser therapy on fibrosis in the repair process of the tibialis anterior muscle in rats. Lasers Med Sci 29:813–821CrossRefPubMed Alves AN, Fernandes KP, Melo CA, Yamaguchi RY, França CM, Teixeira DF, Bussadori SK, Nunes FD, Mesquita-Ferrari RA (2013) Modulating effect of low level-laser therapy on fibrosis in the repair process of the tibialis anterior muscle in rats. Lasers Med Sci 29:813–821CrossRefPubMed
6.
go back to reference Vatansever F, Rodrigues NC, Assis LL, Peviani SS, Durigan JL, Moreira FM, Hamblin MR, Parizotto NA (2012) Low intensity laser therapy accelerates muscle regeneration in aged rats. Photonics Lasers Med 1:287–297PubMedPubMedCentral Vatansever F, Rodrigues NC, Assis LL, Peviani SS, Durigan JL, Moreira FM, Hamblin MR, Parizotto NA (2012) Low intensity laser therapy accelerates muscle regeneration in aged rats. Photonics Lasers Med 1:287–297PubMedPubMedCentral
7.
go back to reference Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-alpha and TGF-beta in skeletal muscle during the repair process. Lasers Med Sci 26:335–340CrossRefPubMed Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-alpha and TGF-beta in skeletal muscle during the repair process. Lasers Med Sci 26:335–340CrossRefPubMed
8.
go back to reference Liu XG, Zhou YJ, Liu TC, Yuan JQ (2009) Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. Photomed Laser Surg 27:863–869CrossRefPubMed Liu XG, Zhou YJ, Liu TC, Yuan JQ (2009) Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. Photomed Laser Surg 27:863–869CrossRefPubMed
9.
go back to reference Burattini S, Ferri P, Battistelli M, Curci R, Luchetti F, Falcieri E (2004) C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur J Histochem 48:223–233PubMed Burattini S, Ferri P, Battistelli M, Curci R, Luchetti F, Falcieri E (2004) C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur J Histochem 48:223–233PubMed
10.
go back to reference Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469PubMed Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469PubMed
11.
go back to reference Ferreira MP, Ferrari RA, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DA, Fernandes KP (2009) Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 27:901–906CrossRefPubMed Ferreira MP, Ferrari RA, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DA, Fernandes KP (2009) Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 27:901–906CrossRefPubMed
12.
13.
go back to reference Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefPubMed Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefPubMed
15.
go back to reference Chen J, Zhao Y, Liu Y (2014) The role of nucleotides and purinergic signaling in apoptotic cell clearance - implications for chronic inflammatory diseases. Front Immunol 5:656–665PubMedPubMedCentral Chen J, Zhao Y, Liu Y (2014) The role of nucleotides and purinergic signaling in apoptotic cell clearance - implications for chronic inflammatory diseases. Front Immunol 5:656–665PubMedPubMedCentral
16.
go back to reference Dai S, Xu C, Tian Y, Cheng W, Li B (2014) Stimulation of calcium overload and apoptosis by sonodynamic therapy combined with hematoporphyrin monomethyl ether in C6 glioma cells. Oncol Lett 8:1675–1681PubMedPubMedCentral Dai S, Xu C, Tian Y, Cheng W, Li B (2014) Stimulation of calcium overload and apoptosis by sonodynamic therapy combined with hematoporphyrin monomethyl ether in C6 glioma cells. Oncol Lett 8:1675–1681PubMedPubMedCentral
17.
go back to reference Miki Y, Akimoto J, Hiranuma M, Fujiwara Y (2014) Effect of talaporfin sodium-mediated photodynamic therapy on cell death modalities in human glioblastoma T98G cells. J Toxicol Sci 39:821–827CrossRefPubMed Miki Y, Akimoto J, Hiranuma M, Fujiwara Y (2014) Effect of talaporfin sodium-mediated photodynamic therapy on cell death modalities in human glioblastoma T98G cells. J Toxicol Sci 39:821–827CrossRefPubMed
18.
go back to reference Higuchi Y (2004) Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med 8:455–464CrossRefPubMed Higuchi Y (2004) Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med 8:455–464CrossRefPubMed
20.
go back to reference Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387CrossRefPubMed Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387CrossRefPubMed
22.
go back to reference Broekman MM, Roelofs HM, Wong DR, Kerstholt M, Leijten A, Hoentjen F, Peters WH, Wanten GJ, de Jong DJ (2015) Allopurinol and 5-aminosalicylic acid influence thiopurine-induced hepatotoxicity in vitro. Cell Biol Toxicol 31:161–71CrossRefPubMedPubMedCentral Broekman MM, Roelofs HM, Wong DR, Kerstholt M, Leijten A, Hoentjen F, Peters WH, Wanten GJ, de Jong DJ (2015) Allopurinol and 5-aminosalicylic acid influence thiopurine-induced hepatotoxicity in vitro. Cell Biol Toxicol 31:161–71CrossRefPubMedPubMedCentral
23.
go back to reference Palanki R, Arora S, Tyagi N, Rusu L, Singh AP, Palanki S, Carter JE, Singh S (2015) Size is an essential parameter in governing the UVB-protective efficacy of silver nanoparticles in human keratinocytes. BMC Cancer 15:636CrossRefPubMedPubMedCentral Palanki R, Arora S, Tyagi N, Rusu L, Singh AP, Palanki S, Carter JE, Singh S (2015) Size is an essential parameter in governing the UVB-protective efficacy of silver nanoparticles in human keratinocytes. BMC Cancer 15:636CrossRefPubMedPubMedCentral
24.
go back to reference El-Khatib M, Tepe C, Senger B, Dibué-Adjei M, Riemenschneider MJ, Stummer W, Steiger HJ, Cornelius JF (2015) Aminolevulinic acid-mediated photodynamic therapy of human meningioma: an in vitro study on primary cell lines. Int J Mol Sci 16:9936–48CrossRefPubMedPubMedCentral El-Khatib M, Tepe C, Senger B, Dibué-Adjei M, Riemenschneider MJ, Stummer W, Steiger HJ, Cornelius JF (2015) Aminolevulinic acid-mediated photodynamic therapy of human meningioma: an in vitro study on primary cell lines. Int J Mol Sci 16:9936–48CrossRefPubMedPubMedCentral
25.
go back to reference Maia ML, Bonjardim LR, Quintans Jde S, Ribeiro MA, Maia LG, Conti PC (2012) Effect of low-level laser therapy on pain levels in patients with temporomandibular disorders: a systematic review. J Appl Oral Sci 20:594–602CrossRefPubMedPubMedCentral Maia ML, Bonjardim LR, Quintans Jde S, Ribeiro MA, Maia LG, Conti PC (2012) Effect of low-level laser therapy on pain levels in patients with temporomandibular disorders: a systematic review. J Appl Oral Sci 20:594–602CrossRefPubMedPubMedCentral
26.
go back to reference Heu F, Forster C, Namer B, Dragu A, Lang W (2013) Effect of low-level laser therapy on blood flow and oxygen- hemoglobin saturation of the foot skin in healthy subjects: a pilot study. Laser Ther 22:21–30CrossRefPubMedPubMedCentral Heu F, Forster C, Namer B, Dragu A, Lang W (2013) Effect of low-level laser therapy on blood flow and oxygen- hemoglobin saturation of the foot skin in healthy subjects: a pilot study. Laser Ther 22:21–30CrossRefPubMedPubMedCentral
27.
go back to reference Rodrigues NC, Assis L, Fernandes KR, Magri A, Ribeiro DA, Brunelli R, Abreu DC, Renno AC (2013) Effects of 660 nm low-level laser therapy on muscle healing process after cryolesion. J Rehabil Res Dev 50:985–996CrossRefPubMed Rodrigues NC, Assis L, Fernandes KR, Magri A, Ribeiro DA, Brunelli R, Abreu DC, Renno AC (2013) Effects of 660 nm low-level laser therapy on muscle healing process after cryolesion. J Rehabil Res Dev 50:985–996CrossRefPubMed
28.
go back to reference Yonezu T, Kogure S (2013) The effect of low-level laser irradiation on muscle tension and hardness compared among three wavelengths. Laser Ther 22:201–207CrossRefPubMedPubMedCentral Yonezu T, Kogure S (2013) The effect of low-level laser irradiation on muscle tension and hardness compared among three wavelengths. Laser Ther 22:201–207CrossRefPubMedPubMedCentral
29.
go back to reference Eduardo FP, Mehnert DU, Monezi TA, Zezell DM, Schubert MM, Eduardo CP, Marques MM (2007) Cultured epithelial cells response to phototherapy with low intensity laser. Lasers Surg Med 34:365–372CrossRef Eduardo FP, Mehnert DU, Monezi TA, Zezell DM, Schubert MM, Eduardo CP, Marques MM (2007) Cultured epithelial cells response to phototherapy with low intensity laser. Lasers Surg Med 34:365–372CrossRef
30.
go back to reference Souza NH, Ferrari RA, Silva DF, Nunes FD, Bussadori SK, Fernandes KP (2014) Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages. Braz J Phys Ther 18:306–314 Souza NH, Ferrari RA, Silva DF, Nunes FD, Bussadori SK, Fernandes KP (2014) Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages. Braz J Phys Ther 18:306–314
32.
go back to reference Rodrigues NC, Brunelli R, Abreu DC, Fernandes K, Parizotto NA, Renno AC (2014) Morphological aspects and Cox-2 expression after exposure to 780-nm laser therapy in injured skeletal muscle: an in vivo study. Braz J Phys Ther 18:395–401CrossRefPubMedPubMedCentral Rodrigues NC, Brunelli R, Abreu DC, Fernandes K, Parizotto NA, Renno AC (2014) Morphological aspects and Cox-2 expression after exposure to 780-nm laser therapy in injured skeletal muscle: an in vivo study. Braz J Phys Ther 18:395–401CrossRefPubMedPubMedCentral
33.
go back to reference Hao D, Song Y, Che Z, Liu Q (2014) Calcium overload and in vitro apoptosis of the C6 glioma cells mediated by sonodynamic therapy (hematoporphyrin monomethyl ether and ultrasound). Cell Biochem Biophys 70:1445–1452CrossRefPubMedPubMedCentral Hao D, Song Y, Che Z, Liu Q (2014) Calcium overload and in vitro apoptosis of the C6 glioma cells mediated by sonodynamic therapy (hematoporphyrin monomethyl ether and ultrasound). Cell Biochem Biophys 70:1445–1452CrossRefPubMedPubMedCentral
34.
go back to reference Lee YH, Kim DH, Kim YS, Kim TJ (2013) Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichorium intybus root extract. Biosci Biotechnol Biochem 77:375–377CrossRefPubMed Lee YH, Kim DH, Kim YS, Kim TJ (2013) Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichorium intybus root extract. Biosci Biotechnol Biochem 77:375–377CrossRefPubMed
Metadata
Title
Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser
Authors
Larissa Alexsandra da Silva Neto Trajano
Camila Luna da Silva
Simone Nunes de Carvalho
Erika Cortez
André Luiz Mencalha
Adenilson de Souza da Fonseca
Ana Carolina Stumbo
Publication date
01-07-2016
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 5/2016
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-1909-8

Other articles of this Issue 5/2016

Lasers in Medical Science 5/2016 Go to the issue