Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells

Authors: Guozhu Chen, Xuhui Zhang, Ming Zhao, Yan Wang, Xiang Cheng, Di Wang, Yuanji Xu, Zhiyan Du, Xiaodan Yu

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Celastrol is an active ingredient of the traditional Chinese medicinal plant Tripterygium Wilfordii, which exhibits significant antitumor activity in different cancer models in vitro and in vivo; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity.

Methods

The downregulation of heat shock protein 90 (HSP90) client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK), and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS) was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP) and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC) complexes.

Results

Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC), an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP). Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 μM celastrol in the absence and presence of NAC. Moreover, the inhibition of MRC complex I activity preceded ROS accumulation in H1299 cells after celastrol treatment.

Conclusion

We identified ROS as the key intermediate for celastrol-induced cytotoxicity. JNK was activated by celastrol-induced ROS accumulation and then initiated mitochondrial-mediated apoptosis. Celastrol induced the downregulation of HSP90 client proteins through ROS accumulation and facilitated ROS accumulation by inhibiting MRC complex I activity. These results identify a novel target for celastrol-induced anticancer activity and define its mode of action.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C: Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2001, 25: 1341-1357. 10.1016/S0278-5846(01)00192-0.CrossRefPubMed Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C: Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2001, 25: 1341-1357. 10.1016/S0278-5846(01)00192-0.CrossRefPubMed
2.
go back to reference Jung HW, Chung YS, Kim YS, Park YK: Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-kappaB in LPS-stimulated BV-2 microglial cells. Exp Mol Med. 2007, 39: 715-721.CrossRefPubMed Jung HW, Chung YS, Kim YS, Park YK: Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-kappaB in LPS-stimulated BV-2 microglial cells. Exp Mol Med. 2007, 39: 715-721.CrossRefPubMed
3.
go back to reference Chow AM, Brown IR: Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones. 2007, 12: 237-244. 10.1379/CSC-269.1.CrossRefPubMedPubMedCentral Chow AM, Brown IR: Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones. 2007, 12: 237-244. 10.1379/CSC-269.1.CrossRefPubMedPubMedCentral
4.
go back to reference Kim DH, Shin EK, Kim YH, Lee BW, Jun JG, Park JH, Kim JK: Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. Eur J Clin Invest. 2009, 39: 819-827. 10.1111/j.1365-2362.2009.02186.x.CrossRefPubMed Kim DH, Shin EK, Kim YH, Lee BW, Jun JG, Park JH, Kim JK: Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. Eur J Clin Invest. 2009, 39: 819-827. 10.1111/j.1365-2362.2009.02186.x.CrossRefPubMed
5.
go back to reference Nagase M, Oto J, Sugiyama S, Yube K, Takaishi Y, Sakato N: Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol. Biosci Biotechnol Biochem. 2003, 67: 1883-1887. 10.1271/bbb.67.1883.CrossRefPubMed Nagase M, Oto J, Sugiyama S, Yube K, Takaishi Y, Sakato N: Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol. Biosci Biotechnol Biochem. 2003, 67: 1883-1887. 10.1271/bbb.67.1883.CrossRefPubMed
6.
go back to reference Abbas S, Bhoumik A, Dahl R, Vasile S, Krajewski S, Cosford ND, Ronai ZA: Preclinical studies of celastrol and acetyl isogambogic acid in melanoma. Clin Cancer Res. 2007, 13: 6769-6778. 10.1158/1078-0432.CCR-07-1536.CrossRefPubMedPubMedCentral Abbas S, Bhoumik A, Dahl R, Vasile S, Krajewski S, Cosford ND, Ronai ZA: Preclinical studies of celastrol and acetyl isogambogic acid in melanoma. Clin Cancer Res. 2007, 13: 6769-6778. 10.1158/1078-0432.CCR-07-1536.CrossRefPubMedPubMedCentral
7.
go back to reference Zhang T, Hamza A, Cao X, Wang B, Yu S, Zhan CG, Sun D: A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther. 2008, 7: 162-170. 10.1158/1535-7163.MCT-07-0484.CrossRefPubMed Zhang T, Hamza A, Cao X, Wang B, Yu S, Zhan CG, Sun D: A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther. 2008, 7: 162-170. 10.1158/1535-7163.MCT-07-0484.CrossRefPubMed
8.
go back to reference Ge P, Ji X, Ding Y, Wang X, Fu S, Meng F, Jin X, Ling F, Luo Y: Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurol Res. 2010, 32: 94-100. 10.1179/016164109X12518779082273.CrossRefPubMed Ge P, Ji X, Ding Y, Wang X, Fu S, Meng F, Jin X, Ling F, Luo Y: Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurol Res. 2010, 32: 94-100. 10.1179/016164109X12518779082273.CrossRefPubMed
9.
go back to reference Lu Z, Jin Y, Qiu L, Lai Y, Pan J: Celastrol, a novel HSP90 inhibitor, depletes Bcr-Abl and induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation. Cancer Lett. 2010, 290: 182-191. 10.1016/j.canlet.2009.09.006.CrossRefPubMed Lu Z, Jin Y, Qiu L, Lai Y, Pan J: Celastrol, a novel HSP90 inhibitor, depletes Bcr-Abl and induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation. Cancer Lett. 2010, 290: 182-191. 10.1016/j.canlet.2009.09.006.CrossRefPubMed
10.
go back to reference He D, Xu Q, Yan M, Zhang P, Zhou X, Zhang Z, Duan W, Zhong L, Ye D, Chen W: The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma. BMC Cancer. 2009, 9: 343-10.1186/1471-2407-9-343.CrossRefPubMedPubMedCentral He D, Xu Q, Yan M, Zhang P, Zhou X, Zhang Z, Duan W, Zhong L, Ye D, Chen W: The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma. BMC Cancer. 2009, 9: 343-10.1186/1471-2407-9-343.CrossRefPubMedPubMedCentral
11.
go back to reference Zhu H, Ding WJ, Wu R, Weng QJ, Lou JS, Jin RJ, Lu W, Yang B, He QJ: Synergistic anti-cancer activity by the combination of TRAIL/APO-2L and celastrol. Cancer Invest. 2010, 28: 23-32. 10.3109/07357900903095664.CrossRefPubMed Zhu H, Ding WJ, Wu R, Weng QJ, Lou JS, Jin RJ, Lu W, Yang B, He QJ: Synergistic anti-cancer activity by the combination of TRAIL/APO-2L and celastrol. Cancer Invest. 2010, 28: 23-32. 10.3109/07357900903095664.CrossRefPubMed
12.
go back to reference Chen M, Rose AE, Doudican N, Osman I, Orlow SJ: Celastrol synergistically enhances temozolomide cytotoxicity in melanoma cells. Mol Cancer Res. 2009, 7: 1946-1953. 10.1158/1541-7786.MCR-09-0243.CrossRefPubMed Chen M, Rose AE, Doudican N, Osman I, Orlow SJ: Celastrol synergistically enhances temozolomide cytotoxicity in melanoma cells. Mol Cancer Res. 2009, 7: 1946-1953. 10.1158/1541-7786.MCR-09-0243.CrossRefPubMed
13.
go back to reference Yang H, Chen D, Cui QC, Yuan X, Dou QP: Celastrol, a triterpene extracted from the Chinese "Thunder of God Vine," is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006, 66: 4758-4765. 10.1158/0008-5472.CAN-05-4529.CrossRefPubMed Yang H, Chen D, Cui QC, Yuan X, Dou QP: Celastrol, a triterpene extracted from the Chinese "Thunder of God Vine," is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006, 66: 4758-4765. 10.1158/0008-5472.CAN-05-4529.CrossRefPubMed
14.
go back to reference Huang Y, Zhou Y, Fan Y, Zhou D: Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett. 2008, 264: 101-106. 10.1016/j.canlet.2008.01.043.CrossRefPubMed Huang Y, Zhou Y, Fan Y, Zhou D: Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett. 2008, 264: 101-106. 10.1016/j.canlet.2008.01.043.CrossRefPubMed
15.
go back to reference Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D: Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol Chem. 2009, 284: 35381-35389. 10.1074/jbc.M109.051532.CrossRefPubMedPubMedCentral Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D: Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol Chem. 2009, 284: 35381-35389. 10.1074/jbc.M109.051532.CrossRefPubMedPubMedCentral
16.
go back to reference Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A, Nieto M, Du J, Stegmaier K, Raj SM, Maloney KN, Clardy J, Hahn WC, Chiosis G, Golub TR: Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006, 10: 321-330. 10.1016/j.ccr.2006.09.005.CrossRefPubMed Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A, Nieto M, Du J, Stegmaier K, Raj SM, Maloney KN, Clardy J, Hahn WC, Chiosis G, Golub TR: Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006, 10: 321-330. 10.1016/j.ccr.2006.09.005.CrossRefPubMed
17.
go back to reference Chadli A, Felts SJ, Wang Q, Sullivan WP, Botuyan MV, Fauq A, Ramirez-Alvarado M, Mer G: Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the Co-chaperone p23. J Biol Chem. 2010, 285: 4224-4231. 10.1074/jbc.M109.081018.CrossRefPubMed Chadli A, Felts SJ, Wang Q, Sullivan WP, Botuyan MV, Fauq A, Ramirez-Alvarado M, Mer G: Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the Co-chaperone p23. J Biol Chem. 2010, 285: 4224-4231. 10.1074/jbc.M109.081018.CrossRefPubMed
18.
go back to reference Sethi G, Ahn KS, Pandey MK, Aggarwal BB: Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood. 2007, 109: 2727-2735.PubMed Sethi G, Ahn KS, Pandey MK, Aggarwal BB: Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood. 2007, 109: 2727-2735.PubMed
19.
go back to reference Lee JH, Koo TH, Yoon H, Jung HS, Jin HZ, Lee K, Hong YS, Lee JJ: Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem Pharmacol. 2006, 72: 1311-1321. 10.1016/j.bcp.2006.08.014.CrossRefPubMed Lee JH, Koo TH, Yoon H, Jung HS, Jin HZ, Lee K, Hong YS, Lee JJ: Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem Pharmacol. 2006, 72: 1311-1321. 10.1016/j.bcp.2006.08.014.CrossRefPubMed
20.
go back to reference Pham AN, Blower PE, Alvarado O, Ravula R, Gout PW, Huang Y: Pharmacogenomic approach reveals a role for the x(c)- cystine/glutamate antiporter in growth and celastrol resistance of glioma cell lines. J Pharmacol Exp Ther. 2010, 332: 949-958. 10.1124/jpet.109.162248.CrossRefPubMed Pham AN, Blower PE, Alvarado O, Ravula R, Gout PW, Huang Y: Pharmacogenomic approach reveals a role for the x(c)- cystine/glutamate antiporter in growth and celastrol resistance of glioma cell lines. J Pharmacol Exp Ther. 2010, 332: 949-958. 10.1124/jpet.109.162248.CrossRefPubMed
21.
go back to reference Poyton RO, Ball KA, Castello PR: Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009, 20: 332-340. 10.1016/j.tem.2009.04.001.CrossRefPubMed Poyton RO, Ball KA, Castello PR: Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009, 20: 332-340. 10.1016/j.tem.2009.04.001.CrossRefPubMed
22.
go back to reference Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003, 278: 8516-8525. 10.1074/jbc.M210432200.CrossRefPubMed Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003, 278: 8516-8525. 10.1074/jbc.M210432200.CrossRefPubMed
23.
go back to reference Xu W, Ngo L, Perez G, Dokmanovic M, Marks PA: Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci USA. 2006, 103: 15540-15545. 10.1073/pnas.0607518103.CrossRefPubMedPubMedCentral Xu W, Ngo L, Perez G, Dokmanovic M, Marks PA: Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci USA. 2006, 103: 15540-15545. 10.1073/pnas.0607518103.CrossRefPubMedPubMedCentral
24.
go back to reference Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K: Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003, 10: 2495-2505. 10.2174/0929867033456477.CrossRefPubMed Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K: Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003, 10: 2495-2505. 10.2174/0929867033456477.CrossRefPubMed
25.
go back to reference Dias N, Bailly C: Drugs targeting mitochondrial functions to control tumor cell growth. Biochemical Pharmacology. 2005, 70: 1-12. 10.1016/j.bcp.2005.03.021.CrossRefPubMed Dias N, Bailly C: Drugs targeting mitochondrial functions to control tumor cell growth. Biochemical Pharmacology. 2005, 70: 1-12. 10.1016/j.bcp.2005.03.021.CrossRefPubMed
26.
go back to reference Islam KN, Kayanoki Y, Kaneto H, Suzuki K, Asahi M, Fujii J, Taniguchi N: TGF-beta1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med. 1997, 22: 1007-1017. 10.1016/S0891-5849(96)00493-5.CrossRefPubMed Islam KN, Kayanoki Y, Kaneto H, Suzuki K, Asahi M, Fujii J, Taniguchi N: TGF-beta1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med. 1997, 22: 1007-1017. 10.1016/S0891-5849(96)00493-5.CrossRefPubMed
27.
go back to reference Lin SS, Huang HP, Yang JS, Wu JY, Hsia TC, Lin CC, Lin CW, Kuo CL, Gibson Wood W, Chung JG: DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett. 2008, 272: 77-90. 10.1016/j.canlet.2008.06.031.CrossRefPubMed Lin SS, Huang HP, Yang JS, Wu JY, Hsia TC, Lin CC, Lin CW, Kuo CL, Gibson Wood W, Chung JG: DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett. 2008, 272: 77-90. 10.1016/j.canlet.2008.06.031.CrossRefPubMed
28.
go back to reference Pan JS, Hong MZ, Ren JL: Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol. 2009, 15: 1702-1707. 10.3748/wjg.15.1702.CrossRefPubMedPubMedCentral Pan JS, Hong MZ, Ren JL: Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol. 2009, 15: 1702-1707. 10.3748/wjg.15.1702.CrossRefPubMedPubMedCentral
29.
go back to reference Dalton TP, Shertzer HG, Puge A: Regulation of gene expression by reactive oxygen. Pharmacol Toxicol. 1999, 39: 67-101. 10.1146/annurev.pharmtox.39.1.67. Dalton TP, Shertzer HG, Puge A: Regulation of gene expression by reactive oxygen. Pharmacol Toxicol. 1999, 39: 67-101. 10.1146/annurev.pharmtox.39.1.67.
30.
go back to reference Fruehauf JP, Meyskens FL: Reactive oxygen species: a breath of life or death?. Clin Cancer Res. 2007, 13: 789-794. 10.1158/1078-0432.CCR-06-2082.CrossRefPubMed Fruehauf JP, Meyskens FL: Reactive oxygen species: a breath of life or death?. Clin Cancer Res. 2007, 13: 789-794. 10.1158/1078-0432.CCR-06-2082.CrossRefPubMed
31.
go back to reference Sauer H, Wartenberg M: Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal. 2005, 7: 1423-1434. 10.1089/ars.2005.7.1423.CrossRefPubMed Sauer H, Wartenberg M: Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal. 2005, 7: 1423-1434. 10.1089/ars.2005.7.1423.CrossRefPubMed
32.
go back to reference Simon HU, Haj-Yehia A, Levi-Schaffer F: Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000, 5: 415-418. 10.1023/A:1009616228304.CrossRefPubMed Simon HU, Haj-Yehia A, Levi-Schaffer F: Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000, 5: 415-418. 10.1023/A:1009616228304.CrossRefPubMed
33.
go back to reference Fleury C, Mignotte B, Vayssiere JL: Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002, 84: 131-141. 10.1016/S0300-9084(02)01369-X.CrossRefPubMed Fleury C, Mignotte B, Vayssiere JL: Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002, 84: 131-141. 10.1016/S0300-9084(02)01369-X.CrossRefPubMed
34.
go back to reference Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA, Schrump DS: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst. 2002, 94: 504-513.CrossRefPubMed Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA, Schrump DS: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst. 2002, 94: 504-513.CrossRefPubMed
35.
go back to reference Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K: Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ. 2006, 13: 730-737. 10.1038/sj.cdd.4401830.CrossRefPubMed Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K: Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ. 2006, 13: 730-737. 10.1038/sj.cdd.4401830.CrossRefPubMed
36.
go back to reference Shen HM, Liu ZG: JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006, 40: 928-939. 10.1016/j.freeradbiomed.2005.10.056.CrossRefPubMed Shen HM, Liu ZG: JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006, 40: 928-939. 10.1016/j.freeradbiomed.2005.10.056.CrossRefPubMed
37.
go back to reference Fan J, Xu G, Nagel DJ, Hua Z, Zhang N, Yin G: A model of ischemia and reperfusion increases JNK activity, inhibits the association of BAD and 14-3-3, and induces apoptosis of rabbit spinal neurocytes. Neurosci Lett. 2010, 473: 196-201. 10.1016/j.neulet.2010.02.045.CrossRefPubMed Fan J, Xu G, Nagel DJ, Hua Z, Zhang N, Yin G: A model of ischemia and reperfusion increases JNK activity, inhibits the association of BAD and 14-3-3, and induces apoptosis of rabbit spinal neurocytes. Neurosci Lett. 2010, 473: 196-201. 10.1016/j.neulet.2010.02.045.CrossRefPubMed
38.
go back to reference Xiao D, Powolny AA, Singh SV: Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species-dependent apoptosis in human breast cancer cells. J Biol Chem. 2008, 283: 30151-30163. 10.1074/jbc.M802529200.CrossRefPubMedPubMedCentral Xiao D, Powolny AA, Singh SV: Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species-dependent apoptosis in human breast cancer cells. J Biol Chem. 2008, 283: 30151-30163. 10.1074/jbc.M802529200.CrossRefPubMedPubMedCentral
39.
go back to reference Bogoyevitch MA, Kobe B: Uses for JNK: the Many and Varied Substrates of the c-Jun N-Terminal Kinases. Microbiology and Molecular Biology Reviews. 2006, 70: 1061-1095. 10.1128/MMBR.00025-06.CrossRefPubMedPubMedCentral Bogoyevitch MA, Kobe B: Uses for JNK: the Many and Varied Substrates of the c-Jun N-Terminal Kinases. Microbiology and Molecular Biology Reviews. 2006, 70: 1061-1095. 10.1128/MMBR.00025-06.CrossRefPubMedPubMedCentral
40.
go back to reference Davis W, Ronai Z, Tew KD: Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther. 2001, 296: 1-6.PubMed Davis W, Ronai Z, Tew KD: Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther. 2001, 296: 1-6.PubMed
41.
go back to reference Afonso V, Santos G, Collin P, Khatib AM, Mitrovic DR, Lomri N, Leitman DC, Lomri A: Tumor necrosis factor-alpha down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway. Free Radic Biol Med. 2006, 41: 709-721. 10.1016/j.freeradbiomed.2006.05.014.CrossRefPubMed Afonso V, Santos G, Collin P, Khatib AM, Mitrovic DR, Lomri N, Leitman DC, Lomri A: Tumor necrosis factor-alpha down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway. Free Radic Biol Med. 2006, 41: 709-721. 10.1016/j.freeradbiomed.2006.05.014.CrossRefPubMed
42.
go back to reference Wang W, Adachi M, Kawamura R, Sakamoto H, Hayashi T, Ishida T, Imai K, Shinomura Y: Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis. 2006, 11: 2225-2235. 10.1007/s10495-006-0287-2.CrossRefPubMed Wang W, Adachi M, Kawamura R, Sakamoto H, Hayashi T, Ishida T, Imai K, Shinomura Y: Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis. 2006, 11: 2225-2235. 10.1007/s10495-006-0287-2.CrossRefPubMed
43.
go back to reference Sassa H, Takaishi Y, Terada H: The triterpene celastrol as a very potent inhibitor of lipid peroxidation in mitochondria. Biochem Biophys Res Commun. 1990, 172: 890-897. 10.1016/0006-291X(90)90759-G.CrossRefPubMed Sassa H, Takaishi Y, Terada H: The triterpene celastrol as a very potent inhibitor of lipid peroxidation in mitochondria. Biochem Biophys Res Commun. 1990, 172: 890-897. 10.1016/0006-291X(90)90759-G.CrossRefPubMed
44.
go back to reference Sassa H, Kogure K, Takaishi Y, Terada H: Structural basis of potent antiperoxidation activity of the triterpene celastrol in mitochondria: effect of negative membrane surface charge on lipid peroxidation. Free Radic Biol Med. 1994, 17: 201-207. 10.1016/0891-5849(94)90075-2.CrossRefPubMed Sassa H, Kogure K, Takaishi Y, Terada H: Structural basis of potent antiperoxidation activity of the triterpene celastrol in mitochondria: effect of negative membrane surface charge on lipid peroxidation. Free Radic Biol Med. 1994, 17: 201-207. 10.1016/0891-5849(94)90075-2.CrossRefPubMed
45.
go back to reference Moser C, Lang SA, Stoeltzing O: Heat-shock protein 90 (Hsp90) as a molecular target for therapy of gastrointestinal cancer. Anticancer Res. 2009, 29: 2031-2042.PubMed Moser C, Lang SA, Stoeltzing O: Heat-shock protein 90 (Hsp90) as a molecular target for therapy of gastrointestinal cancer. Anticancer Res. 2009, 29: 2031-2042.PubMed
46.
go back to reference Chiosis G, Neckers L: Tumor selectivity of Hsp90 inhibitors: the explanation remains elusive. ACS Chem Biol. 2006, 1: 279-284. 10.1021/cb600224w.CrossRefPubMed Chiosis G, Neckers L: Tumor selectivity of Hsp90 inhibitors: the explanation remains elusive. ACS Chem Biol. 2006, 1: 279-284. 10.1021/cb600224w.CrossRefPubMed
47.
go back to reference Miyata Y: Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des. 2005, 11: 1131-1138. 10.2174/1381612053507585.CrossRefPubMed Miyata Y: Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des. 2005, 11: 1131-1138. 10.2174/1381612053507585.CrossRefPubMed
48.
go back to reference Clark CB, Rane MJ, El Mehdi D, Miller CJ, Sachleben LR, Gozal E: Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex. Free Radic Biol Med. 2009, 47: 1440-1449. 10.1016/j.freeradbiomed.2009.08.012.CrossRefPubMedPubMedCentral Clark CB, Rane MJ, El Mehdi D, Miller CJ, Sachleben LR, Gozal E: Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex. Free Radic Biol Med. 2009, 47: 1440-1449. 10.1016/j.freeradbiomed.2009.08.012.CrossRefPubMedPubMedCentral
49.
go back to reference Samuni Y, Ishii H, Hyodo F, Samuni U, Krishna MC, Goldstein S, Mitchell JB: Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free Radic Biol Med. 2010, 48: 1559-1563. 10.1016/j.freeradbiomed.2010.03.001.CrossRefPubMedPubMedCentral Samuni Y, Ishii H, Hyodo F, Samuni U, Krishna MC, Goldstein S, Mitchell JB: Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free Radic Biol Med. 2010, 48: 1559-1563. 10.1016/j.freeradbiomed.2010.03.001.CrossRefPubMedPubMedCentral
50.
go back to reference Bandyopadhyay U, Das D, Banerjee RK: Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci India. 1999, 77: 658-666. Bandyopadhyay U, Das D, Banerjee RK: Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci India. 1999, 77: 658-666.
Metadata
Title
Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells
Authors
Guozhu Chen
Xuhui Zhang
Ming Zhao
Yan Wang
Xiang Cheng
Di Wang
Yuanji Xu
Zhiyan Du
Xiaodan Yu
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-170

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine