Skip to main content
Top
Published in: Tumor Biology 2/2014

01-02-2014 | Research Article

CDKN2A exon-wise deletion status and novel somatic mutations in Indian glioma patients

Authors: M. K. Sibin, Dhananjaya I. Bhat, Ch Lavanya, M. Jeru Manoj, S. Aakershita, G. K. Chetan

Published in: Tumor Biology | Issue 2/2014

Login to get access

Abstract

Over the years, deletions of CDKN2A (p16) tumor suppressor gene has been studied using FISH and multiplex PCR, with major focus on exon 2 in various cancers, and the frequency of mutation is found to be varied in different studies. In this study, we analyzed the deletion status of all three exons of p16 and frequency of exon 2 somatic point mutations in glioma from the Indian population and its clinical implications. Multiplex PCR was carried out in order to check deletion of all 3 exons in 50 glioma samples. Nonconventional PCR-SSCP analysis and sequencing was done to identify mutations in 48 cases. Deletion of at least one of the three exons of p16 INK4A was observed in ten cases (20 %). The frequencies of exon-wise deletions were 10 % for exon 1, 4 % for exon 2, and 8 % for exon 3. Two out of 48 samples were positive for mutations in p16 exon 2. One sample had a transition of G to C on position 147 with a codon change TGG to TGC which does not contribute to the protein structure. Another sample had a transversion of A to G on the position 154 with a codon change ATG to GTG with change in amino acid methionine to valine in 52nd position. Deletion pattern was found to be varied in three exons. Frequency of p16 gene mutation was less in the Indian population (4.2 %), and this mutation does not contribute to any remarkable change in protein structure.
Literature
1.
2.
go back to reference Kita D, Yonekawa Y, Weller M, Ohgaki H. PI3KCA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol (Berl). 2007;113:295–302.CrossRef Kita D, Yonekawa Y, Weller M, Ohgaki H. PI3KCA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol (Berl). 2007;113:295–302.CrossRef
3.
go back to reference Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. 1996;6:217–24.PubMedCrossRef Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. 1996;6:217–24.PubMedCrossRef
4.
go back to reference Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8(1):23–6.PubMedCrossRef Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8(1):23–6.PubMedCrossRef
5.
go back to reference Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368:753–6.PubMedCrossRef Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368:753–6.PubMedCrossRef
6.
go back to reference Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 1998;92(6):713–23.PubMedCrossRef Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 1998;92(6):713–23.PubMedCrossRef
7.
go back to reference Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83:993–1000.PubMedCrossRef Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83:993–1000.PubMedCrossRef
8.
go back to reference Pollock PM, Pearson JV, Hayward NK. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosom Cancer. 1996;15(2):77–88.PubMedCrossRef Pollock PM, Pearson JV, Hayward NK. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosom Cancer. 1996;15(2):77–88.PubMedCrossRef
9.
go back to reference Kyritsis AP, Zhang B, Zhang W, Xiao M, Takeshima H, Bondy ML, et al. Mutations of the p16 gene in gliomas. Oncogene. 1996;12(1):63–7.PubMed Kyritsis AP, Zhang B, Zhang W, Xiao M, Takeshima H, Bondy ML, et al. Mutations of the p16 gene in gliomas. Oncogene. 1996;12(1):63–7.PubMed
10.
go back to reference Li YJ, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G, Hamelin R. Frequent loss of heterozygosity on chromosome 9, and low incidence of mutations of cyclin-dependent kinase inhibitors p15 (MTS2) and p16 (MTS1) genes in gliomas. Oncogene. 1995;11(3):597–600.PubMed Li YJ, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G, Hamelin R. Frequent loss of heterozygosity on chromosome 9, and low incidence of mutations of cyclin-dependent kinase inhibitors p15 (MTS2) and p16 (MTS1) genes in gliomas. Oncogene. 1995;11(3):597–600.PubMed
11.
go back to reference Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, et al. Deletion of p16 and p15 genes in brain tumors. Cancer Res. 1994;54(24):6353–8.PubMed Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, et al. Deletion of p16 and p15 genes in brain tumors. Cancer Res. 1994;54(24):6353–8.PubMed
12.
go back to reference Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP. Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer. 1997;75(1):2–8.PubMedCentralPubMedCrossRef Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP. Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer. 1997;75(1):2–8.PubMedCentralPubMedCrossRef
13.
go back to reference Moulton T, Samara G, Chung WY, Yuan L, Desai R, Sisti M. MTS1/p16/CDKN2 lesions in primary glioblastomamultiforme. Am J Pathol. 1995;146(3):613–9.PubMed Moulton T, Samara G, Chung WY, Yuan L, Desai R, Sisti M. MTS1/p16/CDKN2 lesions in primary glioblastomamultiforme. Am J Pathol. 1995;146(3):613–9.PubMed
14.
go back to reference Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 1997;94:303–9.PubMedCrossRef Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 1997;94:303–9.PubMedCrossRef
15.
go back to reference Barker FG, Chen P, Furman F, Aldape KD, Edwards MS, Israel MA. P16 deletion and mutation analysis in human brain tumors. J Neurooncol. 1997;31:17–23.PubMedCrossRef Barker FG, Chen P, Furman F, Aldape KD, Edwards MS, Israel MA. P16 deletion and mutation analysis in human brain tumors. J Neurooncol. 1997;31:17–23.PubMedCrossRef
16.
go back to reference Miettinen H, Kononen J, Sallinen P, Alho H, Helen P, Helin H. CDKN2/p16 predicts survival in oligodendrogliomas: comparison with astrocytomas. JNeurooncol. 1999;41(3):205–11.CrossRef Miettinen H, Kononen J, Sallinen P, Alho H, Helen P, Helin H. CDKN2/p16 predicts survival in oligodendrogliomas: comparison with astrocytomas. JNeurooncol. 1999;41(3):205–11.CrossRef
17.
go back to reference Riese U, Dahse R, Fiedler W, Theuer C, Koscielny S, Ernst G, et al. Tumor suppressor gene p16 (CDKN2A) mutation status and promoter inactivation in head and neck cancer. Mol Med. 1999;4:6. Riese U, Dahse R, Fiedler W, Theuer C, Koscielny S, Ernst G, et al. Tumor suppressor gene p16 (CDKN2A) mutation status and promoter inactivation in head and neck cancer. Mol Med. 1999;4:6.
18.
go back to reference Hamzeiy H. Non-radioactive single-strand conformation polymorphis (SSCP) analysis of relatively long PCR products. RPS. 2006;1:8–14. Hamzeiy H. Non-radioactive single-strand conformation polymorphis (SSCP) analysis of relatively long PCR products. RPS. 2006;1:8–14.
19.
go back to reference Brant J. Bassam, Gustavo Caetano-Anollés, Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotechnol. 1993;42(2–3):181–8. Brant J. Bassam, Gustavo Caetano-Anollés, Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotechnol. 1993;42(2–3):181–8.
20.
go back to reference Lukas J, Aagaard L, Strauss M, Bartek J. Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. Cancer Res. 1995;55(21):4818–23.PubMed Lukas J, Aagaard L, Strauss M, Bartek J. Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. Cancer Res. 1995;55(21):4818–23.PubMed
21.
go back to reference Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34.PubMedCrossRef Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34.PubMedCrossRef
22.
go back to reference Perry A, Nobori T, Ru N, Anderl K, Borell TJ, Mohapatra G, et al. Detection of p16 gene deletions in gliomas: a comparison of fluorescence in situ hybridization (FISH) versus quantitative PCR. J Neuropathol Exp Neurol. 1997;56:999–1008.PubMedCrossRef Perry A, Nobori T, Ru N, Anderl K, Borell TJ, Mohapatra G, et al. Detection of p16 gene deletions in gliomas: a comparison of fluorescence in situ hybridization (FISH) versus quantitative PCR. J Neuropathol Exp Neurol. 1997;56:999–1008.PubMedCrossRef
23.
go back to reference Dreyling MH, Bohlander SK, Adeyanju MO, Olopade OI. Detection of CDKN2 deletions in tumor cell lines and primary glioma by interphase fluorescence in situ hybridization. Cancer Res. 1995;55:984–8.PubMed Dreyling MH, Bohlander SK, Adeyanju MO, Olopade OI. Detection of CDKN2 deletions in tumor cell lines and primary glioma by interphase fluorescence in situ hybridization. Cancer Res. 1995;55:984–8.PubMed
24.
go back to reference Giani C, Finocchiaro G. Mutation rate of the CDKN2 gene in malignant gliomas. Cancer Res. 1994;54:6338–9.PubMed Giani C, Finocchiaro G. Mutation rate of the CDKN2 gene in malignant gliomas. Cancer Res. 1994;54:6338–9.PubMed
25.
go back to reference Walker DG, Duan W, Popovic EA, Kaye AH, Tomlinson FH, Lavin M. Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas. Cancer Res. 1995;55:20–3.PubMed Walker DG, Duan W, Popovic EA, Kaye AH, Tomlinson FH, Lavin M. Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas. Cancer Res. 1995;55:20–3.PubMed
26.
go back to reference Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 1996;56:150–3.PubMed Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 1996;56:150–3.PubMed
27.
go back to reference Mochizuki S, Iwadate Y, Namba H, Yoshida Y, Yamaura A, Sakiyama S, et al. Homozygous deletion of the p16/MTS-1/CDKN2 gene in malignant gliomas is infrequent among Japanese patients. Int J Oncol. 1999;15:983–9.PubMed Mochizuki S, Iwadate Y, Namba H, Yoshida Y, Yamaura A, Sakiyama S, et al. Homozygous deletion of the p16/MTS-1/CDKN2 gene in malignant gliomas is infrequent among Japanese patients. Int J Oncol. 1999;15:983–9.PubMed
28.
go back to reference Ono Y, Tamiya T, Ichikawa T, Kunishio K, Matsumoto K, Furuta T, et al. Malignant astrocytomas with homozygous CDKN2/p16 gene deletions have higher Ki-67 proliferation indices. J Neuropathol Exp Neurol. 1996;55:1026–31.PubMedCrossRef Ono Y, Tamiya T, Ichikawa T, Kunishio K, Matsumoto K, Furuta T, et al. Malignant astrocytomas with homozygous CDKN2/p16 gene deletions have higher Ki-67 proliferation indices. J Neuropathol Exp Neurol. 1996;55:1026–31.PubMedCrossRef
29.
go back to reference Sonoda Y, Yoshimoto T, Sekiya T. Homozygous deletion of the MTS1/p16 and MTS2/p15 genes and amplification of the CDK4 gene in glioma. Oncogene. 1995;11:2145–9.PubMed Sonoda Y, Yoshimoto T, Sekiya T. Homozygous deletion of the MTS1/p16 and MTS2/p15 genes and amplification of the CDK4 gene in glioma. Oncogene. 1995;11:2145–9.PubMed
30.
go back to reference Tsuzuki T, Tsunoda S, Sakaki T, Konishi N, Hiasa Y, Nakamura M. Alterations of retinoblastoma, p53, p16(CDKN2), and p15 genes in human astrocytomas. Cancer. 1996;78:287–93.PubMedCrossRef Tsuzuki T, Tsunoda S, Sakaki T, Konishi N, Hiasa Y, Nakamura M. Alterations of retinoblastoma, p53, p16(CDKN2), and p15 genes in human astrocytomas. Cancer. 1996;78:287–93.PubMedCrossRef
31.
go back to reference Kamiryo T, Tada K, Shiraishi S, Shinojima N, Nakamura H, Kochi M, et al. Analysis of homozygous deletion of the p16 gene and correlation with survival in patients with glioblastomamultiforme. J Neurosurg. 2002;96(5):815–22.PubMedCrossRef Kamiryo T, Tada K, Shiraishi S, Shinojima N, Nakamura H, Kochi M, et al. Analysis of homozygous deletion of the p16 gene and correlation with survival in patients with glioblastomamultiforme. J Neurosurg. 2002;96(5):815–22.PubMedCrossRef
32.
go back to reference Purkait S, Jha P, Sharma MC, Suri V, Sharma M, Kale SS, et al. CDKN2A deletion in pediatric versus adult glioblastomas and predictive value of p16 immunohistochemistry. Neuropathology. 2013;33(4):405–12.PubMedCrossRef Purkait S, Jha P, Sharma MC, Suri V, Sharma M, Kale SS, et al. CDKN2A deletion in pediatric versus adult glioblastomas and predictive value of p16 immunohistochemistry. Neuropathology. 2013;33(4):405–12.PubMedCrossRef
33.
go back to reference Sailasree R, Abhilash A, Sathyan KM, Nalinakumari KR, Thomas S, Kannan S. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. CancerEpidemiol Biomarkers Prev. 2008;17(2):414–20.CrossRef Sailasree R, Abhilash A, Sathyan KM, Nalinakumari KR, Thomas S, Kannan S. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. CancerEpidemiol Biomarkers Prev. 2008;17(2):414–20.CrossRef
34.
go back to reference Cairns P, Mao L, Merlo A, Lee DJ, Schwab D, Eby Y, et al. Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science. 1994;265(5170):415–7.PubMedCrossRef Cairns P, Mao L, Merlo A, Lee DJ, Schwab D, Eby Y, et al. Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science. 1994;265(5170):415–7.PubMedCrossRef
35.
go back to reference Kukita Y, Higasa K, Baba S, Nakamura M, Manago S, Suzuki A, et al. Single-strand conformation polymorphism. In: Cotton RGH, Edkins E, Forrest S, editors. Mutation detection, a practical approach. Oxford: IRL Press; 1998. p. 2259–66. Kukita Y, Higasa K, Baba S, Nakamura M, Manago S, Suzuki A, et al. Single-strand conformation polymorphism. In: Cotton RGH, Edkins E, Forrest S, editors. Mutation detection, a practical approach. Oxford: IRL Press; 1998. p. 2259–66.
Metadata
Title
CDKN2A exon-wise deletion status and novel somatic mutations in Indian glioma patients
Authors
M. K. Sibin
Dhananjaya I. Bhat
Ch Lavanya
M. Jeru Manoj
S. Aakershita
G. K. Chetan
Publication date
01-02-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1201-5

Other articles of this Issue 2/2014

Tumor Biology 2/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine